K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

\(\dfrac{36}{x^6}-\dfrac{24}{x^3}+4=\left(\dfrac{6}{x^3}\right)^2-2.\dfrac{6}{x^3}.2+2^2=\left(\dfrac{6}{x^3}-2\right)^2=4\left(\dfrac{3}{x^3}-1\right)\)

21 tháng 9 2021

Bổ sung mũ 2 : \(4\left(\dfrac{3}{x^3}-2\right)^2\)

a) Ta có: \(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)

\(=\dfrac{x^2}{x\left(x-3\right)}-\dfrac{6\left(x-3\right)}{x\left(x-3\right)}-\dfrac{9}{x\left(x-3\right)}\)

\(=\dfrac{x^2-6x+18-9}{x\left(x-3\right)}\)

\(=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

b) Ta có: \(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)

\(=\dfrac{7\left(x+6\right)-x^2+36}{x\left(x+6\right)}\)

\(=\dfrac{7x+42-x^2+36}{x\left(x+6\right)}\)

\(=\dfrac{-\left(x^2-7x-78\right)}{x\left(x+6\right)}\)

\(=\dfrac{-\left(x^2-13x+6x-78\right)}{x\left(x+6\right)}\)

\(=\dfrac{-\left[x\left(x-13\right)+6\left(x-13\right)\right]}{x\left(x+6\right)}\)

\(=\dfrac{13-x}{x}\)

c) Ta có: \(\dfrac{6}{x-3}-\dfrac{2x-6}{x^2-9}-\dfrac{4}{x+3}\)

\(=\dfrac{6\left(x+3\right)-2x+6-4\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{6x+18-2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)

19 tháng 12 2021

\(a,\left(1\right)=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)};\left(2\right)=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)};\left(3\right)=\dfrac{-4}{\left(x-1\right)\left(x+1\right)}\\ b,\left(1\right)=\dfrac{x^4y^3}{xy^3\left(x-y\right)^3};\left(2\right)=\dfrac{x\left(x-y\right)^3}{xy^3\left(x-y\right)^3}\\ c,\left(1\right)=\dfrac{4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)};\left(2\right)=\dfrac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)};\left(3\right)=\dfrac{12x}{\left(x-2\right)\left(x+2\right)}\\ d,\left(1\right)=\dfrac{7\left(x+6\right)}{x\left(x+6\right)};\left(2\right)=\dfrac{x^2}{x\left(x+6\right)};\left(3\right)=\dfrac{36}{x\left(x+6\right)}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a) Chọn MTC là: \(\left( {x - 3y} \right)\left( {x + 3y} \right)\)

Nhân tử phụ của các mẫu thức \(\dfrac{2}{{x - 3y}}\) và \(\dfrac{3}{{x + 3y}}\) lần lượt là: \(\left( {x + 3y} \right);\left( {x - 3y} \right)\)

Vậy:
 \(\dfrac{2}{{x - 3y}} = \dfrac{{2\left( {x + 3y} \right)}}{{\left( {x - 3y} \right)\left( {x + 3y} \right)}}\)

\(\dfrac{3}{{x + 3y}} = \dfrac{{3.\left( {x - 3y} \right)}}{{\left( {x + 3y} \right)\left( {x - 3y} \right)}}\)

b) Ta có: \(\begin{array}{l}4{\rm{x}} + 24 = 4\left( {x + 6} \right)\\{x^2} - 36 = \left( {x - 6} \right)\left( {x + 6} \right)\end{array}\)

Chọn MTC là: \(4\left( {x + 6} \right)\left( {x - 6} \right)\)

Nhân tử phụ của các phân thức \(\dfrac{7}{{4{\rm{x}} + 24}}\) và \(\dfrac{{13}}{{{x^2} - 36}}\) lần lượt là \(\left( {x - 6} \right);4\)

Vậy:

\(\dfrac{7}{{4{\rm{x}} + 24}} = \dfrac{7}{{4\left( {x + 6} \right)}} = \dfrac{{7\left( {x - 6} \right)}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}}\)

\(\dfrac{{13}}{{{x^2} - 36}} = \dfrac{{13}}{{\left( {x + 6} \right)\left( {x - 6} \right)}} = \dfrac{{13.4}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}} = \dfrac{{52}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}}\)

1: Ta có: \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)

Suy ra: \(x^2+4x+4+2x-4=x^2\)

\(\Leftrightarrow6x=0\)

hay \(x=0\left(nhận\right)\)

2: Ta có: \(\dfrac{1}{x-6}-\dfrac{2}{x+6}=\dfrac{3x+6}{x^2-36}\)

Suy ra: \(x+6-2x+12=3x+6\)

\(\Leftrightarrow-x-3x=6-18=-12\)

hay \(x=3\left(nhận\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Lời giải:
1. ĐKXĐ: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{(x+2)^2+2(x-2)}{(x-2)(x+2)}=\frac{x^2}{x^2-4}\)

\(\Leftrightarrow \frac{x^2+6x}{x^2-4}=\frac{x^2}{x^2-4}\)

\(\Rightarrow x^2+6x=x^2\Leftrightarrow x=0\) (tm)

2. ĐKXĐ: $x\neq \pm 6$

PT \(\Leftrightarrow \frac{6+x-2(x-6)}{(x-6)(6+x)}=\frac{3x+6}{x^2-36}\)

\(\Leftrightarrow \frac{18-x}{x^2-36}=\frac{3x+6}{x^2-36}\)

\(\Rightarrow 18-x=3x+6\Leftrightarrow 12=4x\Leftrightarrow x=3\) (tm)

 

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\(a)\dfrac{{3{\rm{x}} + 6}}{{4{\rm{x}} - 8}}.\dfrac{{2{\rm{x}} - 4}}{{x + 2}} = \dfrac{{3\left( {x + 2} \right).2\left( {x - 2} \right)}}{{4.\left( {x - 2} \right).\left( {x + 2} \right)}} = \dfrac{3}{2}\)

\(b)\dfrac{{{x^2} - 36}}{{2{\rm{x}} + 10}}.\dfrac{{x + 5}}{{6 - x}} = \dfrac{{\left( {x - 6} \right)\left( {x + 6} \right)\left( {x + 5} \right)}}{{2\left( {x + 5} \right).\left( { - 1} \right)\left( {x - 6} \right)}} = \dfrac{{x + 6}}{{ - 2}} = \dfrac{{-x- 6}}{{ 2}}\)

\(c)\dfrac{{1 - {y^3}}}{{y + 1}}.\dfrac{{5y + 5}}{{{y^2} + y + 1}} = \dfrac{{\left( {1 - y} \right)\left( {1 + y + {y^2}} \right).5\left( {y + 1} \right)}}{{\left( {y + 1} \right).\left( {{y^2} + y + 1} \right)}} = 5\left( {1 - y} \right)\)

\(d)\dfrac{{x + 2y}}{{4{{\rm{x}}^2} - 4{\rm{x}}y + {y^2}}}.\left( {2{\rm{x}} - y} \right) = \dfrac{{\left( {x + 2y} \right).\left( {2{\rm{x}} - y} \right)}}{{{{\left( {2{\rm{x}} - y} \right)}^2}}} = \dfrac{{x + 2y}}{{2{\rm{x}} - y}}\)

1 tháng 12 2018

\(a,\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2.\left(x-1\right)}+\dfrac{-2x}{\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)}{2.\left(x-1\right).\left(x+1\right)}+\dfrac{\left(-2x\right).x}{x.\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)-2x^2}{x.\left(x+1\right)\left(x-1\right)}\)

25 tháng 11 2022

b: \(=\dfrac{y^2-12y+24}{6y\left(y-6\right)}\)

c: \(=\dfrac{12-2x+3x}{2x\left(x+3\right)}=\dfrac{x+12}{2x\left(x+3\right)}\)

24 tháng 12 2021

b: \(=\dfrac{7x-42-x^2+36}{x\left(x-6\right)}=\dfrac{-x^2+7x-6}{x\left(x-6\right)}=\dfrac{-x+1}{x}\)

24 tháng 12 2021

\(\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x-3\right)}=\dfrac{x\left(x+3\right)-3\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+3x-3x-9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x}\)