Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9) Theo bài, ta có : 5x = 4y
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}\)
Mà y - x = 7
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{y-x}{5-4}=\dfrac{7}{1}=7\)
Do đó : \(\dfrac{x}{4}=7\Rightarrow x=7.4=28\)
\(\dfrac{y}{5}=7\Rightarrow y=7.5=35\)
Vậy x = 28 ; y = 35
\(19.5^{2x+7}=475\\ \Rightarrow5^{2x+7}=25\\ \Rightarrow5^{2x+7}=5^2\\ \Rightarrow2x+7=2\\ \Rightarrow2x=-5\\ \Rightarrow x=-\dfrac{5}{2}\)
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
hình như thứ tự có hơi..... Mình khó hiểu để ???
biết bài nào thì giúp mình bài đó nha, 0 phải làm hết đâu