\(\overline{abc}\) ta cần dùng 2\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

Có vẻ khá lâu rùi ko có ai giải bài này.

1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)

\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số

\(\overline{ab}^2-10.\overline{ab}=c^2+c\)

Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)

Vậy \(10\le\overline{ab}\le16\)

Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)

2 tháng 4 2020

2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.

Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:

\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)

(Thay lần lượt các giá trị vô là xong)

Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.

Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)

1 tháng 2 2020

Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,

Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm

giúp e vs ạ! Cần gấp! Thanks!

2 tháng 2 2020

Bài 1:

Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)

Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)

Vì: \(A\le999\) nên:

\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)

\(\Rightarrow A+B\le999\)

Xét các trường hợp \(A=999\)\(A< 999\) từ đó :

\(\Rightarrow\overline{abcdef}=494209\)

Vậy số cần tìm là: \(494209\)

5 tháng 4 2020

Đặt \(\overline{abc}=11m+k;\overline{xyz}=11n+k\left(k\in N,k< 11\right)\)

Khi đó ta có: \(\overline{abcxyz}=1000.\overline{abc}+\overline{xyz}=1000\left(11m+k\right)+11n+k\)

\(=11000m+11n+1001k\)

Biểu thức trên chia hết cho 11 với mọi m, n, k.

Vậy ....

29 tháng 7 2019

ai giúp mk với

24 tháng 11 2017

không có ai giải được ư help me!!!

30 tháng 8 2020

\(\overline{abc}\) đấy

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Bạn thử xem lại đề xem điều kiện số $1$ thì $abc=n^2-1$ hay $\overline{abc}=n^2-1$ ??

8 tháng 2 2021

pơ'ơ

142533

12245698