K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2021

Đặt \(N=12n^2-5n-25=\left(3n-5\right)\left(4n+5\right)\)

Do n tự nhiên nên \(\left(4n+5\right)-\left(3n-5\right)=n+10>0\Rightarrow4n+5>3n-5\)

N luôn có ít nhất 2 ước số phân biệt là \(3n-5\) và \(4n+5\)

\(\Rightarrow\) N nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}3n-5=1\\4n+5\text{ là số nguyên tố}\end{matrix}\right.\)

\(3n-5=1\Rightarrow n=2\)

Khi đó \(4n+5=13\) là số nguyên tố (thỏa mãn)

Vậy \(n=2\)

22 tháng 8 2021

Cảm ơn thầy ạ.

 

a)Ta có : \(12n^2-5n-25\)

\(=\left(4n+5\right)\left(3n-5\right)\)

Vì \(12n^2-5n-25\)là số nguyên tố

\(\Rightarrow\)Nó chỉ có 2 ước nguyên dương là 1 và chính nó

mà \(4n+5>3n-5\forall n\inℕ\)

\(\Rightarrow3n-5=1\)

\(\Rightarrow n=2\)

Thử lại : \(\left(2.4+5\right)\left(2.3-1\right)=13\)(là số nguyên tố)

Vậy \(n=2\)

b)Tương tự nhé cậu , ta tìm được \(n=0\)

17 tháng 7 2018

a)   \(A=12n^2-5n-25\)

\(=12n^2+15n-20n-25\)

\(=3n\left(4n+5\right)-5\left(4n+5\right)\)

\(=\left(3n-5\right)\left(4n+5\right)\)

Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó

nên  A là số nguyên tố thì:   \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)

do n là số tự nhiên nên \(n=2\)

thử lại:  n=2  thì  A = 13 là số nguyên tố

Vậy n = 2

17 tháng 7 2018

b)  \(B=8n^2+10n+3\)

\(=8n+6n+4n+3\)

\(=2n\left(4n+3\right)+\left(4n+3\right)\)

\(=\left(2n+1\right)\left(4n+3\right)\)

Để B là số nguyên tố thì:   \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)

Do n là số tự nhiên nên  n = 0

Thử lại: \(n=0\)thì    \(B=3\)là số nguyên tố

Vậy  \(n=0\)

11 tháng 10 2020

Ta có: \(\frac{4n^3+11n^2+5n+5}{n+2}=\frac{\left(n+2\right)\left(4n^2+3n-1\right)+7}{n+2}=4n^2+3n-1+\frac{7}{n+2}\)

Để 4n+ 11n2 + 5n + 5 chia hết cho n + 2 thì \(\frac{7}{n+2}\inℤ\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng giá trị:

\(n+2\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(-1\)\(-3\)\(5\)\(-9\)

Vậy \(n\in\left\{-1;-3;5;-9\right\}\)thì 4n+ 11n2 + 5n + 5 chia hết cho n + 2

20 tháng 2 2021

Câu 1:

a) \(A=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\)

        \(=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\left[\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\dfrac{2x+2}{x+1}.\dfrac{x}{x-1}\)

        \(=\dfrac{2\left(x+1\right)}{x+1}.\dfrac{x}{x-1}\)

        \(=2.\dfrac{x}{x-1}\)

        \(=\dfrac{2x}{x-1}\)

Câu 1: 

ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)

a) Ta có: \(A=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-\dfrac{3x\left(x+1\right)}{3x}\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2\left(x+1\right)}{3x\left(x+1\right)}-\dfrac{2\cdot\left(-3x^2-2x+1\right)}{3x\left(x+1\right)}\right):\dfrac{x-1}{x}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x^2+6x}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x\left(x+1\right)}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=2\cdot\dfrac{x}{x-1}=\dfrac{2x}{x-1}\)

b) Để A nguyên thì \(2x⋮x-1\)

\(\Leftrightarrow2x-2+2⋮x-1\)

mà \(2x-2⋮x-1\)

nên \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{2;3\right\}\)