Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)
Nên phần còn lại vô nghiệm
Lời giải
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{xy+yz+xz}{y+z}=\frac{1}{2}\\ \frac{xy+yz+xz}{z+x}=\frac{1}{3}\\ \frac{xy+yz+xz}{x+y}=\frac{1}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x+z}{y+z}=\frac{3}{2}\\ \frac{x+y}{x+z}=\frac{4}{3}\\ \frac{y+z}{x+y}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x-3y-z=0\\ -x+3y-4z=0\\ -x+y+2z=0\end{matrix}\right.\Rightarrow 3x=5y=15z\)
Thay vào phương trình ban đầu: \(5z+\frac{3z.z}{3z+z}=\frac{1}{2}\Leftrightarrow z=\frac{2}{23}\Rightarrow x=\frac{10}{23},y=\frac{6}{23}\)
Thử lại thấy đúng
Vậy nghiệm của HPT là \((x,y,z)=(\frac{10}{23},\frac{6}{23},\frac{2}{23})\)
Lời giải:
ĐKXĐ: \(x>0,y\geq 0\)
Đặt \(x=a,\sqrt{xy}=b\). Nhân hai vế của PT $(2)$ với \(x\sqrt{x}\) ta có:
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} b^2+b+1=a\\ b^3+1=a+3ab\end{matrix}\right.\Rightarrow b^3+1=b^2+b+1+3ab\)
\(\Rightarrow b^3+1=b^2+b+1+3ab\Leftrightarrow b(b^2-b-1-3a)=0\)
TH1: \(b=0\Rightarrow \sqrt{xy}=0\). Vì $x\neq 0$ nên $y=0$. Thay vào PT $(1)$ suy ra $x=1$. Thử lại thỏa mãn
Ta có bộ $(x,y)=(1,0)$
TH2: \(b^2-b-1-3a=0\). Kết hợp với \(b^2+b+1=a\Rightarrow 3(b^2+b+1)-(b^2-b-1)=0\)
\(\Leftrightarrow b^2+2b+2=(b+1)^2+1=0(\text{vl})\)
Vậy HPT có nghiệm $(x,y)=(1,0)$
???????????? V ĐĂNG LÊN LMJ
Đây là câu trl r bn ưi