Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm bài 2 trước nha:
a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y
=(a.y+a.y)-(b.y+b.y)
=2.a.y-2.b.y
=2.y.(a-b)
b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
Bài 3:
a: =>6x(x^2-4)=0
=>x(x-2)(x+2)=0
hay \(x\in\left\{0;2;-2\right\}\)
b: \(\Leftrightarrow9\left(x^2-1\right)-9x^2+6x-1=2\)
=>9x^2-9-9x^2+6x-1=2
=>6x-10=2
=>6x=12
=>x=2
Câu a đơn giản
b)
\(A=\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}=\frac{\left(x^4-x^3\right)-\left(x-1\right)}{\left(x^4+x^3+\frac{x^2}{4}\right)+\left(\frac{11}{4}x^2+2x+\frac{4}{11}\right)+1-\frac{4}{11}}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
\(=\frac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
\(=\frac{\left(x-1\right)^2\left[\left(x^2+x+0,25\right)+0,75\right]}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
\(=\frac{\left(x-1\right)^2\left[\left(x+0,5\right)^2+0,75\right]}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
Vì \(\left(x-1\right)^2\left[\left(x+0,5\right)^2+0,75\right]>0\)và \(\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}>0\)
nên \(A>0\)hay A ko âm
Nhớ k nha !
\(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(=\frac{x^3\left(x-1\right)-\left(x-1\right)}{x^4+x^3+x^2+2x^2+2x+2}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}\)
\(=\frac{\left(x-1\right)^2}{\left(x^2+2\right)}\)
a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2\)
b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)
\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)
\(=x^3+x^2+x-x^2-x-1+x^3-2\)
\(=2x^3-3\)
c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2+xy-yx-y^2-2x^2+2xy\)
\(=-x^2-y^2+2xy\)
a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)
b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)
\(=x^3-1+x^3-2=2x^3-3\)
c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)