K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

a) \(x^4-4x^{3^{ }}+8x+3\)

\(=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(5x^2+5x\right)+\left(3x+3\right)\)

\(=x^{3^{ }}\left(x+1\right)-5x^{2^{ }}\left(x+1\right)+5x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3-5x^2+5x+3\right)\)

\(=\left(x+1\right)\left[\left(x^3-3x^2\right)-\left(2x^2-6x\right)-\left(x-3\right)\right]\)

\(=\left(x+1\right)\left[x^2\left(x-3\right)-2x\left(x-3\right)-\left(x-3\right)\right]\)

\(=\left(x+1\right)\left(x-3\right)\left(x^2-2x-1\right)\)

\(=\left(x+1\right)\left(x-3\right)\left[\left(x-1\right)^2-2\right]\)

\(=\left(x+1\right)\left(x-3\right)\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)\)

19 tháng 5 2018

b, \(x^2\left(y^2-4\right)^2-6x\left(y^2-4\right)+9\)

\(=\left[x\left(y^2-4\right)-3\right]^2\)

\(=\left(xy^2-4x-3\right)^2\)

2 tháng 9 2018

\(x^3-4x^2-8x+8\)

\(=x^3+2x^2-6x^2-12x+4x+8\)

\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-6x+4\right)\)

10 tháng 9 2016

a) \(x^2-81=\left(x-9\right)\left(x+9\right)\)

b) \(4x^2-25=\left(2x-5\right)\left(2x+5\right)\)

c) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

d) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

e) \(6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)

f) \(x^2-4x^2+4y^2+4xy=\left(x^2+4xy+4y^2\right)-4x^2=\left(x+2y\right)^2-4x^2\\ =\left(x+2y+2x\right)\left(x+2y-2x\right)=\left(3x+2y\right)\left(2y-x\right)\)

g) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)

h) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

31 tháng 5 2016

a. \(-x^3-6x^2+6x+1=-x^3+x^2-7x^2+7x-x+1=\left(1-x\right)\left(x^2+7x+1\right)\)

b. \(x^4-4x^2+4x-1=x^4-1-4x\left(x-1\right)=\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)-4x\right]\)

\(=\left(x-1\right)\left(x^3+x^2-3x+1\right)\)

c. \(6x^3-x^2-486x+81=6x^3-54x^2+53x^2-477x-9x+81=\left(x-9\right)\left(6x^2+53x-9\right)\)

\(=\left(x-9\right)\left(x+9\right)\left(6x-1\right)\)

d. \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)=x^2\left(x^2+8x+16\right)-x^2-8x-16-x^2+1\)

\(=x^4+8x^3+14x^2-8x-15=x^4+5x^3+3x^3+15x^2-x^2-5x-3x-15\)

\(=\left(x+5\right)\left(x^3+3x^3-x-3\right)=\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

Để phân tích nhân tử các dạng này, em cần nhẩm được nghiệm để biết đc nhân tử chung là gì, sau đó tách để xuất hiện nhân tử chung đó. CHÚC EM HỌC TỐT :)) 

22 tháng 10 2020

a) x2y3 - 1/2x4y8 = x2y3( 1 - 1/2x2y5 )

b) a2b4 + a3b - abc = ab( ab3 + a2 - c )

c) 7x( y - 4 )2 - ( y - 4 )3 = ( y - 4 )2( 7x - y + 4 )

d) -x2y2z - 6x3y - 8x4z2 - x2y2z2 = -x2( y2z + 6xy + 8x2z2 + y2z2 )

e) x3 - 4x2 + x = x( x2 - 4x + 1 )

19 tháng 9 2018

A = 6x4 - 5x3 + 4x2 + 2x - 1

   = 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1

   = 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )

   = ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )

    = ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )

     = ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]

     = ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )

B = 4x4 + 4x3 + 5x2 + 8x - 6

    = 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6

     = 2x3 ( 2x - 1 ) + 3x( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )

     = ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )

     = ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]

      = ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )

C = x4 + x3 - 5x2 + x - 6

   = x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6 

   = x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )

   = ( x - 2 ) ( x3 + 3x2 + x + 3 )

    = ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]

    = ( x - 2 ) ( x + 3 ) ( x2 + 1 ) 

20 tháng 8 2016

2/ (b- 4b+ 4) - 9a= (b- 2) - 9a= (b- 2 + 3a)(b- 2 - 3a)

20 tháng 8 2016

3/ (x+1)(x+ x + 1)[x + (√13 - 7)/6][3x - (√13 + 7)/2]