Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)
\(=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)(1)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+....+\frac{1}{2006.1004}\)
\(\Rightarrow\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)
\(=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)(2)
Thế (1) và (2) vào ta có:
\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2003.2004}+\frac{1}{2005.2006}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006.1004}\)
=>3010B=\(\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\cdot\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)
=>B=\(\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)
=>\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}=1505\)
hfghfghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh