K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AI=5cm

b: Xét tứ giác AHIK có 

\(\widehat{AHI}=\widehat{AKI}=\widehat{KAH}=90^0\)

Do đó: AHIK là hình chữ nhật

26 tháng 12 2021

giúp em với các thầy cô ạ , em kh biết làm ạ

 

26 tháng 12 2021

a: AI=68,5(cm)

21 tháng 12 2021

a)Xét tứ giác AMCK ta có: IM=IK( vì M đối xứng với K qua I); IA=IC(vì I là trung điểm của AC).

Do đó: tứ giác AMCK là hình bình hành.

Mà ∠AMC=90 độ(vì AMlà đường trung tuyến của ΔABC cân tại A  nên đồng thời là đường cao, hay AM⊥BC). Suy ra: AMCK là h.c.n(đpcm)

b) Vì AMCK là h.c.n.(chứng minh trên) nên AC=MK.

Mà AB=AC(tính chất tam giác cân). Do đó: AB=MK(=AC) (đpcm).

c) Để AMCK là hình vuông thì AM=AK⇒ΔAMK cân tại A. Khi đó đường trung tuyến AI sẽ đồng thời là đường cao, hay AI⊥MK.

Mặt khác, ta có: AB=MK(chứng minh trên); AK=BM(=MC). Do đó: AKMB là hình bình hành.

Suy ra:AB║MK. Mà MK⊥AI.nên AB⊥AI⇒AB⊥AC. Ta lại có: tam giác ABC cân tại A.

vậy nên: để AMCK là hình vuông thì tam giác ABC vuông cân tại A.

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

Còn Câu B câu C nữa

11 tháng 12 2021

a: AM=5cm

11 tháng 12 2021

a: AM=5cm

9 tháng 7 2017

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.