Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)
\(\Leftrightarrow\frac{AB}{BH}=\frac{AC}{AH}\Leftrightarrow AB.AH=BH.AC\left(đpcm\right)\)
b) Xét \(\Delta HBA\)vuông tại H theo định lý PYTAGO ta co
\(\Rightarrow HA=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Vì BI là phân giác của góc ABH
\(\Rightarrow\frac{AI}{AB}=\frac{IH}{BH}\Leftrightarrow\frac{AI}{5}=\frac{IH}{3}\)và AI + IH = HA = 4
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{AI}{5}=\frac{IH}{3}=\frac{AI+IH}{5+3}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{AI}{5}=\frac{1}{2}\Leftrightarrow AI=\frac{5.1}{2}=2,5\left(cm\right)\\\frac{IH}{3}=\frac{1}{2}\Leftrightarrow IH=\frac{3.1}{2}=1,5\left(cm\right)\end{cases}}\)
c) Xét tam giác CHA và tam giác AHB
\(\widehat{H}=\widehat{H}=90^o\)
\(\widehat{A}=\widehat{B}\)( cùng phụ góc C)
=> Tam giác CHA ~ tam giác AHB (gg)
\(\Rightarrow\frac{AC}{AB}=\frac{AH}{HB}\Leftrightarrow\frac{AC}{AH}=\frac{AB}{HB}\)(*)
Vì BI là phân giác của tam giác AHB
\(\Leftrightarrow\frac{AI}{AH}=\frac{AB}{BH}\left(1\right)\)
Vì CK là phân giác của tam giác AHC
\(\Leftrightarrow\frac{CK}{KH}=\frac{AC}{AH}\left(2\right)\)
Từ (1), (2) và (*)
\(\Rightarrow\frac{AI}{AH}=\frac{CK}{KH}\Leftrightarrow KI//AC\left(taletdao\right)\)
d) Gọi N là giao điểm của HM và AC
=> bài toán trở thành chứng minh N là trung điểm
bạn ơi đề cho N là trung điểm rồi mà sao phải chứng minh
a/Xét tg vuông ABD và tg vuông ACE có \(\widehat{BAC}\) chung
=> tg ABD đồng dạng với tg ACE (g.g.g)
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\)
b/ Xét tứ giác BEDC có E và D cùng nhìn BC dưới 1 góc vuông
=> BEDC là tứ giác nội tiếp đường tròn đường kính BC
\(\Rightarrow\widehat{DEC}=\widehat{DBC}\) (góc nội tiếp cùng chắn cung DC) (1)
Ta có
\(\widehat{AED}+\widehat{EDC}=\widehat{AEC}=90^o\) (2)
Xét tg vuông BCD có
\(\widehat{ACB}+\widehat{DBC}=90^o\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{AED}=\widehat{ACB}\)
c/ Xét tg vuông IKE có KI=KE => tg IKE là tg vuông cân tại K
\(\Rightarrow\widehat{IEK}=\widehat{EIK}=45^o\)
\(\Rightarrow\widehat{IEK}=\widehat{BEK}+\widehat{IEB}=45^o\) (1)
Xét tg vuông BEC có
\(\widehat{BEK}=\widehat{ECB}\) (cùng phụ với \(\widehat{EBC}\) ) (2)
Ta có I và E cùng nhìn MC dưới 1 góc vuông => tứ giác MIEC là tứ giác nội tiếp đường tròn đường kính MC
\(\Rightarrow\widehat{IEB}=\widehat{BCM}\) (góc nội tiếp cùng chắn cung IM) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{BEK}+\widehat{IEB}=\widehat{ECB}+\widehat{BCM}=\widehat{ECM}=45^o\)
Xét tg vuông EMC
\(\widehat{EMC}=90^o-\widehat{ECM}=90^o-45^o=45^o=\widehat{ECM}\)
=> tg EMC cân tại E => EM=EC