K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2023

\(\dfrac{2^2}{1\times3}\times\dfrac{3^2}{2.4}\times\dfrac{4^2}{3.5}\times\dfrac{5^2}{4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.3.2.4.3.5.4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.2.3.3.4.4.5.2.3}=\dfrac{2^2.3^2.4^2.5^2}{3^3.2^2.4^2.5.1}=\dfrac{5}{3.1}=\dfrac{5}{3}\)

26 tháng 2 2023

\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4.6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot4\cdot6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot2\cdot4^2\cdot4^2\cdot5\cdot6}\\ =\dfrac{2\cdot5}{6}=\dfrac{5}{3}\)

\(A=1\cdot2+2\cdot3+...+151\cdot152\)

\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)

\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)

\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)

\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)

\(=151\cdot76+151\cdot7676=1170552\)

\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)

\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)

\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)

\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)

\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)

\(=4\left[506\cdot1013+345990150\right]\)

\(=1386010912\)

\(M=1^2+2^2+...+2024^2\)

\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)

\(=2024\cdot2025\cdot\dfrac{4049}{6}\)

=2765871900

\(N=1^3+2^3+...+100^3\)

\(=\left(1+2+3+...+100\right)^2\)

\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)

\(=\left[50\cdot101\right]^2=5050^2\)

\(Q=1^3+2^3+...+2024^3\)

\(=\left(1+2+3+...+2024\right)^2\)

\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)

\(=\left[1012\left(2024+1\right)\right]^2\)

\(=2049300^2\)

25 tháng 2 2022

đừng tin, nó trả lời tào lao đó :v

25 tháng 2 2022

\(=2\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+97\left(98+1\right)+98\left(99+1\right)\\ =1\cdot2+1+2\cdot3+2+3\cdot4+3+...+97\cdot98+97+98\cdot99+98\\ =\left(1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\right)+\left(1+2+3+...+98\right)\\ =323400+4851\\ =328351\)

16 tháng 9 2018

1.3+2.4+3.5+...+99.101

= ( 2 -1 ). ( 2 + 1 ) + ( 3 -1) . ( 3 + 1 ) + . . . +  ( 100 - 1 ) . ( 100 + 1 )

\(2^2\) - 1 + \(3^2\) - 1 + . . . + \(100^2\) - 1

= ( \(2^2\) + \(3^2\)\(100^2\) )  -  (  1 + 1 + . . . + 1 )

= ( \(2^2\) + \(3^2\)+. . . +  \(100^2\)) - 99

Tk mk nha