K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: -103/51*52

\(D=\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{50}+\dfrac{1}{51}-\dfrac{1}{51}-\dfrac{1}{52}\)

=1/2-1/52

=26/52-1/52=25/52

3 tháng 7 2019

\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(\Rightarrow a< b\)

20 tháng 3 2022

d, `3,15+2,4=5,55`

e, \(\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}.\dfrac{11}{11}=\dfrac{5}{7}.1=\dfrac{5}{7}\)

f, `1,25.3,6+3,6.8,75=3,6(1,25+8,75)=3,6.10=36`

\(h,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{99}{100}\)

 

20 tháng 3 2022

\(e\dfrac{5}{7}\times\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}\times1=\dfrac{5}{7}\)

\(f3.6\times\left(1.25+8.75\right)=3.6\times10=36\)

 

3 tháng 4 2016

M.N=1.2.3.4...99.100 / 2.3.4.5....100.101

M.N=1/101

20 tháng 5 2016

Từ 1->100 có:100-1+1=100 (thừa số)

\(\frac{1}{2};\frac{3}{4};\frac{5}{6};.....;\frac{99}{100}\) là những p/s có tử và mẫu là 2 số liên tiếp

=>từ \(\frac{1}{2}\rightarrow\frac{99}{100}\) có : 50 thừa số

=>M có 50 thừa số

Từ 2->101 có:101-2+1=100 (thừa số)

=>từ \(\frac{2}{3}\rightarrow\frac{100}{101}\) có: 50 thừa số

=>N có 50 thừa số

Do đó mỗi biểu thức M,N đều có 50 thừa số

\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};......;\frac{99}{100}< \frac{100}{101}\)

=>\(M=\frac{1}{2}.\frac{2}{3}.......\frac{99}{100}< N=\frac{2}{3}.\frac{4}{5}.........\frac{100}{101}\)

Vậy M<N

20 tháng 5 2016

Chả hiểu đề ra làm sao 

21 tháng 3 2023

 

chi tiết hơn được ko bạn?

 

28 tháng 8 2020

A=2(1-3)+4(5-3)+ 6(5-7)+...+50(49-57)

A=-4-8-12-...-100 = -(4+8+12+...+100) (tính tổng cấp số cộng)