Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có : \(P=x^7-x^2+x^5-x^4-5x+7x-2\)
\(=x^7-x^2+x^5-x^4+2x-2\)
\(Q=x^4-5x^2+x-x^5-x^7-x^2-1\)
\(=x^4-6x^2+x-x^5-x^7-1\)
b, Ta có : \(P+Q=\left(x^7-x^2+x^5-x^4+2x-2\right)+\left(x^4-6x^2+x-x^5-x^7-1\right)\)
\(=x^7-x^2+x^5-x^4+2x-2+x^4-6x^2+x-x^5-x^7-1\)
\(=-7x^2+3x-3\) (Có j sai ib cj , e nhé!)
c, \(Q+A=P\Leftrightarrow A=P-Q\) thay số vào tính nha.
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+4}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+2}.\left(x-2\right)^2=0\)
\(\left(x-2\right)^{x+2}.\left[1-\left(x-2\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{x+2}=0\\1-\left(x-2\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x-2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)
`Answer:`
Ta có lý thuyết sau: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác `0` và có cùng phần biến. Các số khác `0` được coi là những đơn thức đồng dạng.
Vậy đơn thức `-1/2 xy^2` đồng dạng với đơn thức `xy^2`
`=>` Chọn C.
\(C.xy^2\)
\(\text{Lưu ý:Hai đơn thúc đồng dạng là hai đơn thúc có hệ số khác 0 và có cùng phần biến.}\)
\(\text{Lí thuyết:SKG/33 tập 2}\)
\(2^{x+1}+2^{x+2}=5\)
\(\Rightarrow2^{x+1}\left(1+2\right)=5\left(VL\right)\)
^hok tốt^
ta có : x=2010
->x-1=2009
A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1
A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1
A(x)=x+1=2010+1=2011
\(\left(x-1\right)^{43}=\left(x-1\right)^{2021}\)
\(\Rightarrow\left(x-1\right)^{43}\left[\left(x-1\right)^{1978}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^{1978}=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)