Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk tóm tắt các bc nhé:
a) -Xét tamgiac HAC có góc DAC+ góc ACF= 90'(1)
- góc ANF=1/2 cung AD; góc DAC=1/2 cung BD ( sđ góc nt ..=1/2..)
- góc DAC+ góc ANF= 1/2(cug AD+cug BD)=1/2*180=90'(2)
từ (1) (2)<=> ACF=ANF
b) xét tứ giác AFCN có góc ACF=ANF(cm ở a) <=> AFCN nt đg tròn( dấu hiệu nhận bt t4 của đg tròn nt)
c)xét twgiac AFCN nt đg tròn(cm ở b) có NAF+NCF=180'(3) ; AFC+ANC=180'(4)
ta có: AFC+CFE=180'(5) (2 góc kề bù)
từ (4) (5)=> ANC=CFE
xét tamgiac NAE và FCE có góc CEF: chung ; ANC=CFE(cmt)=> tamgiac NAE =tamgiac FCE
=> góc FCE=NAF(2 góc tg uwg)(6)
từ (3) (6)=> góc NCF+FCE=180'
=> N,C, E thg hàng
mk tóm tắt thôi đấy nếu bn làm thì trình bày đầy đủ hơn
ta lại có:góc
Đặt chu vi COH là \(P=OC+OH+CH\)
Ta có:
\(P=OC+OH+CH\le OC+\sqrt{2\left(OH^2+CH^2\right)}=OC+\sqrt{2OC^2}=OC\left(1+\sqrt{2}\right)=R\left(1+\sqrt{2}\right)\)
Dấu "=" xảy ra khi \(OH=CH\Rightarrow\Delta OCH\) vuông cân tại H
\(\Rightarrow\widehat{COH}=45^0\) hay C là điểm nằm trên cung AB sao cho OC hợp với AB 1 góc 45 độ
//Phía trên sử dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) để đánh giá