\(\frac{2n+4}{14n+3}\)là phân số tối giản với mọi n là số tự nhiên.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Gọi d là ƯCLN của 2n + 4 và 14n + 3

<=> 2n + 4 chia hết cho d , 14n + 3 chia hết cho d

<=> 14n + 28 chia hết cho d ,  14n + 3 chia hết cho d

=> 14n + 28 - 14n + 3 chia hết cho d 

=> 25 chia hết cho d

Có vấn đề sai sai yk bạn

22 tháng 2 2017

Không sai đâu. Cô giáo lớp mình nói là phải chứng minh d=1 mà.

9 tháng 5 2017

Gọi p là ƯC(2n+3,4n+8)

Ta có

2n+3 chia hết cho p <=> 1(2n+3) chia hết cho p

4n+8 chia hết cho p <=> (4n+8):2 chia hết cho p

=> (4n+8):2 - 1(2n+3) chia hết cho p

=> 2n+4 - 2n+3 chia hết cho p

=> 1 chia hết cho p

=> p thuộc Ư(1)

=> 2n+3 / 4n+8 là phân số tối giản

15 tháng 1 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d =>  n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d 
 => n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d 
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d  hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d  
=>  (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d  hay 1 chia hết cho d  
Do đó  (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối giản (Đ.P.C.M)

tk cho mk nha $_$

19 tháng 8 2020

a) Gọi ƯCLN(n + 1 ; 2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN (2n + 1 ; 3n + 2) = d

=> \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow6n+4-\left(6n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 2n + 1 ; 3n + 2 là 2 số nguyên tố cùng nhau

=> \(\frac{2n+1}{3n+2}\)là phân số tối giản

c) Gọi ƯCLN(14n + 3; 21n + 5) = d

Ta có : \(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\Rightarrow\left(42n+10\right)-\left(42n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 14n + 3 ; 21n + 5 là 2 số nguyên tố cùng nhau

=> \(\frac{14n+3}{21n+5}\) là phân số tối giản

d) Gọi ƯCLN(25n + 7 ; 15n + 4) = d

=> \(\hept{\begin{cases}25n+7⋮d\\15n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(25n+7\right)⋮d\\10\left(15n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}150n+42⋮d\\150n+40⋮d\end{cases}}\Rightarrow\left(150n+42\right)-\left(150n+40\right)⋮d\Rightarrow2⋮d\)

=> \(d\in\left\{1;2\right\}\)

Nếu n lẻ => 2n + 7 chẵn ; 15n + 4 lẻ 

=> ƯCLN(2n + 7 ; 5n + 4) = 1

Nếu n chẵn => 25n + 7 lẻ  ; 15n + 4 chẵn

=> ƯCLN(2n + 1 ; 15n + 4) = 1

=> d khái 2 <=> d = 1

=> \(\frac{2n+7}{15n+4}\)là phân số tối giản

6 tháng 4 2017

gọi d là ƯCLN(5n+1;6n+1)

=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d

=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d

=>(30n+6)-(30n+5)chia hết cho d

=> 1 chia hết cho d

=> d= 1

=>5n+1 và 6n+1 là hai snt cùng nhau

Vậy phân số 5n+1/6n+1 là phân số tối giản

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

9 tháng 4 2020

câu 1 lỗi r bn

9 tháng 4 2020

a) Gọi d là ƯCLN (2n + 3; 4n + 5)

Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+5⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2.\left(2n+3\right)⋮d\\4n+5⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4n+6⋮d\\4n+5⋮d\end{matrix}\right.\)

=> (4n + 6) - (4n + 5) ⋮ d

=> 4n + 6 - 4n - 5 ⋮ d

=> 1 ⋮ d

=> d = 1

=> ƯCLN (2n + 3; 4n + 5) = 1

=> \(\frac{2n+3}{4n+5}\) là phân số tối giản

b) Gọi d là ƯCLN (2n + 1; 5n + 2)

Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\5n+2⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5.\left(2n+1\right)⋮d\\2.\left(5n+2\right)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10n+5⋮d\\10n+4⋮d\end{matrix}\right.\)

=> (10n + 5) - (10n + 4) ⋮ d

=> 10n + 5 - 10n - 4 ⋮ d

=> 1 ⋮ d

=> d = 1

=> ƯCLN (2n + 1; 5n + 2) = 1

=> \(\frac{2n+1}{5n+2}\) là phân số tối giản

c/ Gọi d là ƯCLN (14n + 3; 21n + 4)

Ta có: \(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3.\left(14n+3\right)⋮d\\2.\left(21n+4\right)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)

=> (42n + 9) - (42n + 8) ⋮ d

=> 42n + 9 - 42n - 8 ⋮ d

=> 1 ⋮ d

=> d = 1

=> ƯCLN (14n + 3; 21n + 4) = 1

=> \(\frac{14n+3}{21n+4}\) là phân số tối giản