K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

\(\dfrac{cosx+sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x+\dfrac{\pi}{6}\right)\)

Làm nốt nhé

NV
7 tháng 10 2020

b.

\(\Leftrightarrow\frac{1}{2}sin4x-\frac{\sqrt{3}}{2}cos4x=sinx\)

\(\Leftrightarrow sin\left(4x-\frac{\pi}{3}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{3}=x+k2\pi\\4x-\frac{\pi}{3}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

c.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=-\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cosx\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=sin\left(-x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=\frac{4\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

loading...  loading...  loading...  loading...  loading...  loading...  

b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)

c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)

\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow sin2x\cdot sinx-cos2x\cdot sinx+sin2x\cdot cosx+sinx\cdot cos2x=cosx\left(sinx+cosx\right)\)

=>\(sin2x\left(sinx+cosx\right)=cosx\left(sinx+cosx\right)\)

=>\(\left(sinx+cosx\right)\cdot\left(sin2x-cosx\right)=0\)

=>\(cosx\cdot\left(2sinx-1\right)\cdot\sqrt{2}\cdot sin\left(x+\dfrac{pi}{4}\right)=0\)

=>\(\left[{}\begin{matrix}cosx=0\\2sinx-1=0\\sin\left(x+\dfrac{pi}{4}\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{pi}{2}+kpi\\sinx=\dfrac{1}{2}\\x+\dfrac{pi}{4}=kpi\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{pi}{2}+kpi\\x=-\dfrac{pi}{4}+kpi\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{pi}{2}+kpi\\x=-\dfrac{pi}{4}+kpi\\x=\dfrac{pi}{6}+k2pi\\x=\dfrac{5}{6}pi+k2pi\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{pi}{2}+kpi;-\dfrac{pi}{4}+kpi;\dfrac{pi}{6}+k2pi;\dfrac{5}{6}pi+k2pi\right\}\)

1 tháng 6 2021

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

1 tháng 6 2021

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

19 tháng 9 2017

hộ vs ae ơi

NV
30 tháng 8 2020

c/

\(\Leftrightarrow cos3x-\sqrt{3}sin3x=\sqrt{3}cos2x-sin2x\)

\(\Leftrightarrow\frac{1}{2}cos3x-\frac{\sqrt{3}}{2}sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(3x+\frac{\pi}{3}\right)=cos\left(2x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\3x+\frac{\pi}{3}=-2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
30 tháng 8 2020

b/

\(\Leftrightarrow cosx-\sqrt{3}sinx=sin2x-\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=sin\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)