Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật
Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5!.2! = 240 cách.
Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_
Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3 cách.
Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.
Vậy xác suất cần tính là P = 240 . A 4 3 . 3 10 ! = 1 210 .
Lời giải:
Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách
TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách
TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách
Tổng số cách: $A_1+A_2+A_3=3024$ cách
Gọi A là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa A”; B là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa B”; E là biến cố “Giáo viên môn Toán không tham khảo cả hai bộ sách giáo khoa A và B”.
Khi đó \(\overline E \) là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa A hoặc B”.
Ta có \(\overline E = A \cup B.\)
\(\begin{array}{l}P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 63\% + 56\% - 28,5\% = 90,5\% \\ \Rightarrow P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - 90,5\% = 9,5\% \end{array}\)
Vậy tỉ lệ giáo viên môn Toán các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B là 9,5%.
Lời giải:
Theo bài thì mỗi bạn sẽ nhận 2 quyển vở khác loại. Gọi số bạn nhận vở toán văn là $a$, vở văn anh là $b$, vở anh toán là $c$
Ta có:
$a+b+c=9; a+b=6; b+c=5; a+c=7$
$\Rightarrow a=3; b=2; c=4$
Tặng quà cho 9 bạn thỏa đề tức là tặng quà sao cho có 3 bạn trong 9 bạn nhận được toán văn, 2 bạn trong 6 bạn còn lại nhân được văn anh, 4 bạn còn lại nhận được anh toán. Số cách trao là:
$C^3_9.C^2_6.C^4_4=1260$
Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn. Vậy có 5.4.4.3.3.2.2.1=2880 cách
Chọn B
Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:
Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.
Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:
Nhóm toán có 4!=24 cách.
Nhóm văn có 2!=2 cách.
Nhóm anh có 6!=720 cách.
Theo quy tắc nhân có : 6.24.2.720=207360 cách.
Chọn B.
Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là 4! cách.
Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là 3! cách.
Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:
+ 1 “buộc” Toán.
+ 1 “buộc” Lý.
+ 5 quyển Hóa.
Thì sẽ có 7! cách xếp.
Vậy theo quy tắc nhân ta có 7!4!3!=725760 cách xếp.
Chọn C.
Chọn A.
Lời giải.
Không gian mẫu là số cách chọn 2 phần thưởng trong số 12 phần thưởng
Suy ra số phần tử của không gian mẫu là Ω = C 12 2 = 66
Gọi A là biến cố ""Bạn An và bạn Bình có phần thưởng giống nhau"".
Để tìm số phần tử của A, ta làm như sau
Gọi x là cặp số gồm 2 quyển Toán và Vật Lí
y là số cặp gồm 2 quyển Toán và Hóa Học;
z là số cặp gồm 2 quyển Vật Lí và Hóa Học
Ta có hệ phương trình
Suy ra số phần tử của biến cố A là
Ω A = C 3 2 + C 4 2 + C 5 2
Vậy xác suất cần tính P ( A ) = 19 66
Đáp án D
Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.
Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình
Trong đó, cách chọn số bộ Toán Lý là C 3 2 , cách chọn số bộ Toán Hóa là C 3 2 , cách chọn số bộ Hóa Lý là C 4 2
Do đó, xác suất là
Tổng số sách là: 15(quyển)
Chọn 1 quyển trong 15 quyển có \(C_{15}^1=15\) (cách chọn)
=>Cô Vân có 15 cách tặng sách