K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Đáp án A.

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật

Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5!.2! = 240 cách.

Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_

Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3  cách.

Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.

Vậy xác suất cần tính là  P = 240 . A 4 3 . 3 10 ! = 1 210 .

13 tháng 12 2019

Chọn A

 

T.A

 

T.A

 

T.A

 

T.A

 

T.A

 

T.A

 

T.A

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

Gọi Ω  là biến cố “xếp  quyển sách lên kệ sách một cách tùy ý” 

=> n( Ω ) = 14!

A là biến cố “xếp 14 cuốn sách lên kệ sách sao cho hai cuốn sách cùng môn không ở cạnh nhau”.

- Xếp  quyển sách Tiếng Anh vào kệ có 7! cách.

-  quyển sách Tiếng Anh tạo ra 8 chỗ trống (gồm 6 chỗ trống ở giữa và 2 chỗ trống trước sau).

 

Đánh số từ 1 đến 8, từ trái sang phải cho các chỗ trống. Khi đó ta xét các trường hợp:

 

TH1: Xếp sách Văn hoặc Toán vào vị trí từ 1 đến 7 có 7! cách.

TH2: Xếp sách Văn hoặc Toán vào vị trí từ 2 đến 8 có 7! cách.

TH3: Xếp  cặp sách Văn – Toán chung vào ngăn, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại. Ta có:

+ Số cách chọn  cặp sách Văn – Toán:  3.4 cách.

 

+ Vị trí 2 cuốn sách trong cặp sách: 2! cách.

+ Xếp các sách còn lại vào các ngăn 3,4,5,6,7 có 5! cách

Vậy ta có số cách xếp 1 cặp sách Văn – Toán chung vào ngăn 2, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại là 3.4.2!.5! cách.

Tương tự cho xếp cặp sách Văn – Toán lần lượt vào các ngăn 3,4,5,6,7

Số trường hợp thuận lợi của biến cố là 

11 tháng 3 2018

Chọn B

Không gian mẫu là tập hợp tất cả các cách xếp 4 quyển Toán khác nhau và 4 quyển Hóa giống nhau vào 8 trong 10 ô trống.

Khi đó, 

Gọi A là biến cố: “ Bốn quyển sách Toán xếp cạnh nhau và 4 quyển sách Hóa xếp cạnh nhau ”.

Để xếp 4 quyển sách Toán cạnh nhau và 4 quyển sách Hóa gần nhau trên giá sách 10 ô trống ta xem như có 4 vị trí để xếp

Xếp 4 quyển toán cạnh nhau có 4! cách, xếp 4 quyển Hóa có 1 cách, sau đó xếp 2 bộ đó vào 2 trong 4 vị trí.

Do đó: 

Xác suất để 4 quyển sách Toán cạnh nhau và 4 quyển Hóa cạnh nhau là:

9 tháng 3 2019

Chọn D

Giá có 3 ngăn như vậy có 2 vách ngăn, coi 2 vách ngăn này là 2 quyển sách giống nhau. Khi đó

bài toán trở thành xếp 14 quyển sách (2 quyển “VÁCH NGĂN” giống nhau) vào 14 vị trí. Đầu

tiên chọn 2 vị trị trí xếp vách ngăn là  C 14 2 , 12 vị trí còn lại xếp 12 quyển sách là 12!. Vậy không gian mẫu là  C 14 2 .12!.

Gọi A là biến cố “không có bất kì hai quyển sách toán nào đứng cạnh nhau”. Ta tìm số cách xếp thỏa mãn A

Đầu tiên ta xếp 11 quyển sách gồm 4 quyển lí, 5 quyển hóa và 2 quyển “VÁCH NGĂN”. Cũng

như trên, ta chọn 2 vị trí xếp 2 quyển “VÁCH NGĂN” trước là  C 11 2 sau đó xếp 9 quyển còn lại là 9!. Vậy số cách xếp 11 quyển này là  C 11 2 .9!. Sau khi xếp xong 11 quyển này thì sẽ có sẽ có 12 khe. Ta chọn 3 khe để xếp 3 quyển toán còn lại, là A 12 3 .

Vậy số cách thỏa mãn biến cố A là . C 11 2 .9!. A 12 3

Vậy .

11 tháng 11 2017

Chọn D

Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu 

Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.

+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có  11 ! 2 ! cách

+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3  cách.

Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra  

Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:

NV
5 tháng 4 2022

Không gian mẫu: \(10!\)

a. Xếp hai cuốn văn và toán ở 2 đầu: có \(5.5.2!\) cách

Xếp 8 cuốn còn lại vào giữa hai cuốn vừa xếp: \(8!\) cách

Xác suất: \(P=\dfrac{5.5.2!.8!}{10!}=\dfrac{5}{9}\)

b. Xếp 5 cuốn sách văn: \(5!\) cách

5 cuốn sách văn tạo thành 6 ô trống, xếp 5 cuốn sách toán vào 6 ô trống: \(A_6^5\) cách

Tổng cộng: \(5!.A_6^5\) cách

Xác suất: \(P=\dfrac{5!.A_6^5}{10!}=\dfrac{1}{42}\)

28 tháng 11 2016

34

28 tháng 11 2016

34560

24 tháng 1 2018

a. Số cách chọn một quyển sách là 5+6+8=19

Chọn A

28 tháng 8 2021

Số cách chọn 3 quyển sách văn là \(C^3_4=4\).

Số cách chọn 3 quyển sách anh là \(C^3_5=10\).

a, Số cách sắp xếp vào 1 kệ dài là \(9!.4.10=14515200\) cách.

b, Coi số sách mỗi loại là một phần tử.

Số cách sắp xếp thỏa mãn yêu cầu bài toán là \(3!.4.10=240\) cách.

28 tháng 8 2021

a, mình nghĩ là 216

b,6 chắc

tik mik nhha