K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Gọi M là trung điểm cạnh AB

Dựa vào tính chất hai mặt phẳng vuông góc với nhau suy ra SM⊥(ABC)

⇒ V S.ABC = 1/3.SΔABC.SM = 1/3.1/2.AC.BC.SM

Gọi N là trung điểm của đoạn AC

MN là đường trung bình của tam giác ABC
⇒ MN ⊥ AC; MN = 1/2.BC = a

Chỉ ra góc giữa mặt phẳng (ABC) và mặt phẳng (SAC) là SMN=60 độ

Tính thể tích hình chóp S.ABC

SM = MN.tanSNM = a.tan60 = a√3.

SN = MN/cosSNM = a/cos60 = 2a.

AB = 2SM = 2a√3.

AC = √(AB^2 − BC^2) = √[(2a√3)^2−(2a)^2]=2a√2

Vậy V S.ABC = 1/3.SΔABC.SM = 1/3.1/2.AC.BC.SM = (2a^3√6)/3 (đvtt)