Giả sử a2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 (A thuộc Z) <=> a2 - n2 = 2006
<=> (A - n)(a + n) = 2006 (*)
Thấy a,n khác tính chẵn lẻ thì vế trái của (*) là số lẻ nên không thõa mãn (*)
Nếu a,n cùng tính chẵn hoặc lẻ thì (A - n) chia hết cho 2 và (a + n) chia hết cho 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thõa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Giả sử a2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 (A thuộc Z) <=> a2 - n2 = 2006
<=> (A - n)(a + n) = 2006 (*)
Thấy a,n khác tính chẵn lẻ thì vế trái của (*) là số lẻ nên không thõa mãn (*)
Nếu a,n cùng tính chẵn hoặc lẻ thì (A - n) chia hết cho 2 và (a + n) chia hết cho 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thõa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương