Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
Nếu khoảng cách giữa hai điểm bất kì đều bé hơn 1 thì ta chỉ cần chọn 1 điểm \(A\) bất kì trong số 2001 điểm đã cho, rồi vẽ đường tròn \(\left(A,1\right)\), đường tròn này sẽ chứa cả 2000 điểm còn lại, do đó ta có đpcm.
Gỉa sử rằng có hai điểm \(A,B\) trong số 2001 điểm đã cho mà có khoảng cách lớn hơn \(1\). Vẽ các đường tròn tâm là \(A,B\) và bán kính cùng là \(1\). Ta còn lại 1999 điểm. Mỗi điểm \(C\) bất kì trong số 1999 điểm ấy, theo giả thiết \(AB,AC,BC\) phải có một đoạn có độ dài bé hơn \(1\). Vì \(AB>1\) nên \(AC
Do số điểm là hữu hạn nên số tam giác tạo ra hữu hạn
Giả sử \(S_{MNP}\)lớn nhất
qua M,N,P kể các đường song song với cạnh đối diện chúng cắt nhau tại ABC khi đó
\(S_{ABC}\le4S_{MNP}\le4\)
ta CM 2009 điểm đã cho thuộc tam giác ABC
Giả sử co điểm D ở ngoài tam giác ABC khi đó \(S_{MNP}< S_{DMN}\) vô lí
Tìm giá trị của x để biểu thức P= \(\frac{x^2-x+1}{\left(x-1\right)^2}\) đạt giá trị nhỏ nhất