K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

\(\Omega=C^2_{52}.C^2_{52}\)

a) Trong mỗi bộ có 4 lá K nên số trường hợp rút được 2 K là \(C^2_4\)

\(\Rightarrow P=\frac{C_4^2.C_4^2}{C_{52}^2.C_{52}^2}=\frac{1}{48841}\)

b) Vì bích, rô , nhép, cơ mỗi bộ có 13 lá nên số trường hợp rút được 1 lá mỗi loại là: \(\left(C_{13}^1\right)^4\)

Vì mỗi bộ chỉ được rút 2 lá nên nếu bộ 1 rút được 2 nguyên tố này thì bộ 2 phải rút được 2 nguyên tố kia

---> Số trường hợp bốc được: \(C_4^2\)

\(\Rightarrow P=\frac{C_4^2.\left(C_{13}^1\right)^4}{\left(C_{52}^2\right)^2}=\frac{169}{1374}\)

c) Nếu bộ 1 bốc được 2 con Q nguyên tố này thì 2 con Q của các nguyên tố còn lại phải nằm ở bộ 2

---> Số trường hợp bốc: \(C_4^2\)

\(\Rightarrow P=\frac{C_4^2}{\left(C_{52}^2\right)^2}=\frac{1}{293046}\)

10 tháng 7 2018

dể thấy : số cách sắp xếp để 2 học sinh \(A;B\) ngồi cùng bàn là : \(30\)

số cách sắp xếp chổ ngồi cho 2 bạn \(A;B\)\(C^2_{30}=435\)

\(\Rightarrow\) sác xuất để hai học sinh \(A;B\) ngồi cùng bàn là \(P=\dfrac{\left|\Omega_A\right|}{\left|\Omega\right|}=\dfrac{30}{435}=\dfrac{2}{29}\)

27 tháng 11 2021

Có \(\dfrac{9999-1113}{3}+1=2963\) số tự nhiên có 4 chữ số chia hết cho 3 được lập từ 9 chữ số trên.

Trong n số tự nhiên chia hết cho 3 liên tiếp (n lẻ) thì có n-2 số tự nhiên chia hết cho 2.

\(\Rightarrow\) Có \(2963-2=2961\) số tự nhiên thỏa mãn yêu cầu bài toán.

2 tháng 1 2019

ta đặt tuổi ông, cháu, bố lần lượt là a,b,c.

theo bài ta có: \(\dfrac{a+b}{2}=36\Leftrightarrow a+b=72\) (1)

lại có tuổi ông hơn tuổi cháu là 54 tuổi nên:

a-b=54 (2)

Từ (1) và(2) suy ra:b=6;a=60.

Mà tbc của tuổi bố và cháu là 23 nên ta có :

b+c=46⇔c=40. chúc bạn học tốt.

3 tháng 12 2020

số có dạng \(\overline{abcdef}\left(0\le a,b,c,d,e,f\le9,a\ne0\right)\)

f có 5 cách chọn

TH1 : số lẻ đứng đầu

a có 4 cách chọn

Chọn 2 số lẻ và xếp vào giữa a, f : \(A^2_3\)

Các số lẻ chia ra 3 khoang giữa a và f, cần chọn ra 2 số chẵn xếp vào 3 khoang đó => số cách chọn : \(C^2_5\cdot C^2_3\cdot2!\)

TH2 : số chẵn đứng đầu

a có 4 cách chọn

Chọn 3 số lẻ xếp giữa a và f : \(A^3_4\)

Chọn 1 số chẵn xếp vào 1 trong 3 khoang giữa 4 số lẻ : \(4\cdot3\)

Số các cần tìm : \(5\cdot\left(4\cdot A^2_3\cdot C^2_5\cdot C^2_3\cdot2!+4\cdot A^3_4\cdot4\cdot3\right)=12960\)

NV
11 tháng 8 2020

2. ĐKXĐ:

a. \(\left\{{}\begin{matrix}cosx\ne0\\2-cosx+tan^2x\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

\(\Rightarrow x\ne\frac{\pi}{2}+k\pi\)

(BPT dưới luôn đúng do \(\left\{{}\begin{matrix}tan^2x\ge0\\2-cosx>0\end{matrix}\right.\) với mọi x)

b. \(sin2x-sinx+3\ge0\)

\(\Leftrightarrow\left(sin2x+2\right)+\left(1-sinx\right)\ge0\)

Do \(\left\{{}\begin{matrix}sin2x\ge-1\\sinx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin2x+2>0\\1-sinx\ge0\end{matrix}\right.\)

\(\Rightarrow\) BPT luôn thỏa mãn hay hàm số xác định trên R

NV
11 tháng 8 2020

1.

\(\Leftrightarrow f\left(x\right)=sin^4x+cos^4x-2m.sinx.cosx\ge0\) ;\(\forall x\in R\)

\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-2m.sinx.cosx\)

\(=-\frac{1}{2}sin^22x-m.sin2x+1\)

Đặt \(sin2x=t\Rightarrow\left|t\right|\le1\)

\(f\left(t\right)=-\frac{1}{2}t^2-mt+1\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)

\(a=-\frac{1}{2}< 0\Rightarrow\min\limits f\left(t\right)\) xảy ra tại 1 trong 2 đầu mút

\(f\left(-1\right)=m+\frac{1}{2}\) ; \(f\left(1\right)=\frac{1}{2}-m\)

TH1: \(\left\{{}\begin{matrix}m+\frac{1}{2}\ge\frac{1}{2}-m\\\frac{1}{2}-m\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{2}\)

TH2: \(\left\{{}\begin{matrix}\frac{1}{2}-m\ge m+\frac{1}{2}\\m+\frac{1}{2}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m\ge-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)