Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126
Đáp án là A.
Gọi số cần lập có dạng: a 1 a 2 a 3 a 4 a 5 ¯
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 3 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 4 3
• Hoán vị 2 nhóm trên có 5! cách
* Các số có số a 1 = 0
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 2 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 3 2
• Hoán vị 2 nhóm trên có 4! cách
Vậy các số cần tìm: C 4 2 . C 4 3 .5 ! − C 4 2 . C 3 2 .4 ! = 2448 số
Xét hai tập hợp A={0;1;2;3;5;8} và B={0;1;2;5;8}.
● Xét số có bốn chữ số đôi một khác nhau với các chữ ố lấy từ tập A.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;3;5}
Khi đó, d có 3 cách chọn, a có 4 cách chọn, b có 4 cách chọn và c có 3 cách chọn.
Do đó, có 3.4.4.3=144 số thỏa mãn yêu cầu trên.
● Xét số có bốn chữ số đôi một khác nhau với các chữ số lấy từ tập B.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;5}
Khi đó, d có 2 cách chọn, a có 3 cách chọn, b có 3 cách chọn và c có 2 cách chọn.
Do đó, có 2.3.3.2=36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144-36=108 số cần tìm.
Chọn đáp án B.
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn, chữ số hàng nghìn có 4 cách chọn, chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là 3.4.3 = 36
Vậy có 144 − 36 = 108 số
Đáp án B
Số cần lập là a b c d e f ¯ , ta có a + b + c − 1 = d + e + f ⇔ 20 = 2 d + e + f ⇔ d + e + f = 10
Với mỗi f ∈ 1 ; 3 ; 5 ⇒ d , e có 4 cách chọn, suy ra a b c d e f ¯ có 4.3 ! = 24 cách chọn
Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài
Chọn C.
Phương pháp:
Tính xác suất theo định nghĩa P A = n A n Ω với n(A) là số phần tử của biến cố A , n ( Ω ) la số phân tử của không gian mẫu.
+ Chú ý rằng: Nếu số được lấy ra có chữ số đứng trước nhỏ hơn chữ số đứng sau thì không thể có số 0 trong số đó.
Cách giải: + Số có 6 chữ số khác nhau là a b c d e f với a , b , c , d , e , f ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9
Nên a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn, e có 6 cách chọn và f có 5 cách chọn.Suy ra số phần tử của không gian mẫu n Ω = 9 . 9 . 8 . 7 . 6 . 5 = 136080
+ Gọi A là biến cố a b c d e f là số lẻ và a < b < c < d < e < f
Suy ra không thể có chữ số 0 trong số a b c d e f và f ∈ 7 ; 9 .
+ Nếu f = 7 ⇒ a , b , c , d , e ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 mà với mỗi bộ 5 số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được C 6 5 = 6 số thỏa mãn.
+ Nếu f = 9 ⇒ a , b , c , d , e ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 mà với mỗi bộ 5 số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được C 8 5 = 56 số thỏa mãn.
Suy ra n A = 6 + 56 = 62 nên xác suất cần tìm là P A = n A n Ω = 62 136080 = 31 68040
Đáp án B.
Sắp xếp 4 số tự nhiên 1, 2, 3, 4 theo thứ tự khác nhau, ta sẽ được một số tự nhiên có 4 chữ số khác nhau. Vậy số cần lập là 4! = 24 (số).
Đáp án B
Sắp xếp 4 số tự nhiên 1, 2, 3, 4 theo thứ tự khác nhau ta sẽ được các số tự nhiên có 4 chữ số khác nhau => Có 4 ! = 24 số.
Đáp án A
Gọi số lập được là abcd
→ d ∈ 1 ; 3 ; 5 ; 7 ; 9 ⇒ 5 cach a ≠ d ⇒ 8 c a c h b ≠ a ≠ d ⇒ 8 c a c h c ≠ b ≠ a ≠ d ⇒ 7 c a c h
⇒ có 5.8.8.7 = 2240 số thỏa mãn