K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Đáp án B

Gọi số cần tìm có dạng  a 1 a 2 a 3 a 4 a 5 ¯

thỏa mãn  a 1 > a 2 > a 3 > a 4 > a 5

và a i ∈ A 0 ; 1 ; 2 ; . . . ; 9

Vì mỗi tập hợp gồm 5 chữ số thuộc tập hợp A chỉ tạo được một số thỏa yêu cầu bài toán

Vậy có  C 10 5 = 252 số cần tìm

21 tháng 4 2018

Đáp án B

Gọi số cần tìm có dạng  a 1 a 2 a 3 a 4 a 5 ¯

thỏa mãn  a 1 > a 2 > a 3 > a 4 > a 5

và  a 1 ∈ A = 0 ; 1 ; 2 ; . . . ; 9

Vì mỗi tập hợp gồm 5 chữ số thuộc tập hợp A chỉ tạo được một số thỏa yêu cầu bài toán

Vậy có  C 10 5 = 252  số cần tìm

 

30 tháng 12 2019

Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách chọn 5 chữ số khác nhau để lập số cần thiết. Nhưng khi đã có 5 chữ số khác nhau rồi, chỉ có một cách xếp 5 chữ số đó để tạo nên số cần thiết. Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 số.

19 tháng 5 2017

\(C^5_{10}\) cách chọn 5 chữ số khác nhau để lập số cần thiết. Nhưng khi đã có 5 chữ số khác nhau rồi, chỉ có một cách xếp 5 chữ số đó để tạo nên số cần thiết.

Vậy có \(C^5_{10}=252\) số.

18 tháng 2 2018

10 tháng 8 2019

Đáp án C

14 tháng 5 2019

3:

Ta sẽ chia M ra làm 3 nhóm

Nhóm 1: \(A=\left\{0;3;6\right\}\)

Nhóm 2: \(B=\left\{1;4;7\right\}\)

Nhóm 3: \(C=\left\{2;5;8\right\}\)

TH1: 1 số A,1 số B, 1 số C

*Nếu số ở A chọn là số 0 thì sẽ có 3*3*2*2*1=36 cách

*Nếu số A chọn khác 0 thì sẽ là 2*3*3*3!=108 cách

=>Có 108+36=144 cách

TH2: 3 số A

=>Có 2*2*1=4 số

TH3: 3 số B

=>Có 3!=6 số

TH4: 3 số C

=>Có 3!=6 số

=>Có 144+4+6+6=148+12=160 số

25 tháng 1 2017

Chọn C

Giả sử số lập được có dạng 

Ta có 

Vì  nên ta có các trường hợp sau

Trường hợp 1:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6  được chọn từ 

+ Có 3 cách chọn chọn a 6

+ Có 5! cách chọn chọn bộ 5 số 

Suy ra có 3.5! = 360 số.

Trường hợp 2:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6   được chọn từ 

a 6 = 0, có 5! cách chọn bộ 5 số 

a 6 ≠ 0 khi đó  a 6 có 3 cách chọn,  a 1 có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 3.4.4!= 408 số

Trường hợp 3:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6  được chọn từ 

a 6  = 0, có 5! cách chọn bộ 5 số 

a 6 ≠ 0 khi đó  a 6  có 1 cách chọn,   a 1  có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 1.4.4! = 216 số

Vậy có: 360 + 408 + 216 = 984 số.