Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trắc nghiệm rất lẹ (chắc vài giây), còn tự luận hơi lâu:
Hiển nhiên chỉ cần xét với \(x>2\) (vì vế trái luôn dương). Chú ý rằng \(a^{logx}=x^{loga}\)
Với \(a=10\Rightarrow x+2=x-2\) vô nghiệm (ktm)
- Trắc nghiệm: với \(a>10\Rightarrow\left(x^{loga}+2\right)^{loga}>x+2>x-2\) pt vô nghiệm
Với \(a< 10\) chọn 2 giá trị a=2 và a=9 để kiểm tra hàm \(\left(x^{loga}+2\right)^{loga}-x+2\) thấy đều đổi dấu ở chế độ table \(\Rightarrow a=\left\{2;3;...;9\right\}\) có 8 giá trị nguyên
- Tự luận: xét với \(x>2\), đặt \(loga=m>0\) pt trở thành: \(\left(x^m+2\right)^m=x-2\)
Đặt \(x^m+2=t\Rightarrow\left\{{}\begin{matrix}x^m=t-2\\t^m=x-2\end{matrix}\right.\)
\(\Rightarrow x^m-t^m=t-x\Rightarrow x^m+x=t^m+t\) (1)
Xét hàm \(f\left(x\right)=x^m+x\Rightarrow f'\left(x\right)=mx^{m-1}+1>0\Rightarrow f\left(x\right)\) đồng biến
Do đó \(\left(1\right)\Rightarrow x=t\Rightarrow x^m=x-2\Rightarrow x^m-x+2=0\)
Xét hàm \(f\left(x\right)=x^m-x+2\)
- Với \(m>1\Rightarrow f'\left(x\right)=m.x^{m-1}-1>1-1\ge0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(2\right)=2^m-2+2=2^m>0\Rightarrow f\left(x\right)\) vô nghiệm (ktm)
- Với \(0< m< 1\) ta có:
\(f\left(2\right)=2^m>0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=\lim\limits_{x\rightarrow+\infty}x\left(x^{m-1}-1+\dfrac{2}{x}\right)\)
Chú ý rằng \(m< 1\Rightarrow x^{m-1}=\dfrac{1}{x^{1-m}}\rightarrow0\) khi \(x\rightarrow+\infty\Rightarrow x^{m-1}-1+\dfrac{2}{x}\rightarrow-1\Rightarrow\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=-\infty\)
\(\Rightarrow f\left(2\right).\lim\limits_{x\rightarrow+\infty}f\left(x\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thỏa mãn \(x>2\)
Vậy \(0< m< 1\) hay \(0< loga< 1\Rightarrow2\le a< 10\Rightarrow a=\left\{2;3;...;9\right\}\)
\(\left(x^2y-8x+y-4\right)log_3y=2log_3\dfrac{\sqrt{8x-y+4}}{x}-log_3y=log_3\dfrac{8x-y+4}{x^2y}\)
\(\Rightarrow log_3\left(x^2y\right)+x^2y.log_3y=log_3\left(8x-y+4\right)+\left(8x-y+4\right)log_3y\)
Xét hàm \(f\left(t\right)=log_3t+t.log_3y\Rightarrow f'\left(t\right)=\dfrac{1}{1.ln3}+log_3y>0\)
\(\Rightarrow x^2y=8x-y+4\)
\(\Rightarrow y=\dfrac{8x+4}{x^2+1}\)
Tìm y để pt trên có nghiệm lớn hơn 1, lập BBT \(\Rightarrow y< 6\)
Với \(x\le3\) hiển nhiên ko thỏa mãn nên ta chỉ cần xét với \(x>3\)
\(\Leftrightarrow\left(x^{log_5m}+3\right)^{log_5m}=x-3\)
Đặt \(log_5m=k>1\Rightarrow\left(x^k+3\right)^k=x-3\)
Đặt \(x^k+3=t>3\Rightarrow\left\{{}\begin{matrix}x^k=t-3\\t^k=x-3\end{matrix}\right.\)
\(\Rightarrow x^k-t^k=t-x\)
\(\Rightarrow x^k+x=t^k+t\)
Hàm \(f\left(u\right)=u^k+u\) có \(f'\left(u\right)=k.u^{k-1}+1>0\Rightarrow f\left(u\right)\) đồng biến khi \(u>3\)
\(\Rightarrow x=t\)
\(\Rightarrow x^k+3=x\Rightarrow x^k-x+3=0\)
Với \(k>1\) ta có \(f\left(x\right)=x^k-x+3\) có \(f'\left(x\right)=k.x^{k-1}-1>1.3^0-1=0\) khi \(x>3\) nên hàm đồng biến
\(\Rightarrow f\left(x\right)>f\left(3\right)=3^k>0\Rightarrow f\left(x\right)\) vô nghiệm
Vậy ko tồn tại \(m>1\) thỏa mãn yêu cầu đề bài
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:
\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);
\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)
Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2
Vậy Max A = 16
Lời giải:
Đặt $\sqrt{x^2+1}+x=a$ thì:
$f(a)=e^a-e^{\frac{1}{a}}$
$f'(a)=e^a+\frac{1}{a^2}.e^{\frac{1}{a}}>0$ với mọi $a$
Do đó hàm $f(a)$ là hàm đồng biến hay $f(x)$ là hàm đồng biến trên R
$\Rightarrow f(x)> f(0)=0$ với mọi $x>0$
$\Rightarrow f(\frac{12}{m+1})>0$ với $m$ nguyên dương
Do đó để $f(m-7)+f(\frac{12}{m+1})<0$ thì $f(m-7)<0$
$\Rightarrow m-7<0$
Mặt khác, dễ thấy: $f(x)+f(-x)=0$. Bây h xét:
$m=1$ thì $f(m-7)+f(\frac{12}{m+1})=f(-6)+f(6)=0$ (loại)
$m=2$ thì $f(m-7)+f(\frac{12}{m+1})=f(-5)+f(4)=f(4)-f(5)<0$ (chọn)
$m=3$ thì $f(m-7)+f(\frac{12}{m+1})=f(-4)+f(3)=f(3)-f(4)<0$ (chọn)
$m=4$ thì $f(m-7)+f(\frac{12}{m+1})=f(-3)+f(2,4)=f(2,4)-f(3)<0$ (chọn)
$m=5$ thì $f(m-7)+f(\frac{12}{m+1})=f(-2)+f(2)=0$ (loại)
$m=6$ thì $f(m-7)+f(\frac{12}{m+1})=f(-1)+f(12/7)>f(-1)+f(1)=0$ (loại)
Vậy có 3 số tm
\(I=\int\limits^{-1}_{-2}\dfrac{6a}{e^x}dx-\int\limits^{-1}_{-2}\dfrac{f\left(x\right)}{e^x}dx=J-I_1\)
Xét \(I_1\) , đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_1=-f\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{f'\left(x\right)}{e^x}dx=-f\left(-1\right).e+f\left(-2\right).e^2+I_2\)
Xét \(I_2\) , đặt \(\left\{{}\begin{matrix}u=f'\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f''\left(x\right)dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_2=-f'\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{f''\left(x\right)}{e^x}dx=-f'\left(-1\right).e+f'\left(-2\right).e^2+I_3\)
Xét \(I_3\) , đặt \(\left\{{}\begin{matrix}u=f''\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'''\left(x\right)dx=6a.dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_3=-f''\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{6a}{e^x}dx=-f''\left(-1\right).e+f''\left(-2\right).e^2+J\)
Do đó:
\(I=J+f\left(-1\right).e-f\left(-2\right).e^2+f'\left(-1\right).e-f'\left(-2\right).e^2+f''\left(-1\right).e-f''\left(-2\right).e^2-J\)
\(=e\left[f\left(-1\right)+f'\left(-1\right)+f''\left(-1\right)\right]-e^2\left[f\left(-2\right)+f'\left(-2\right)+f''\left(-2\right)\right]\)
\(=e.g\left(-1\right)-e^2.g\left(-2\right)=e+e^2=e\left(e+1\right)\)