Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
\(PT\Leftrightarrow9x^2+16x+96=9x^2+256y^2+576-96xy+768y-144x.\)
\(\Leftrightarrow256y^2-160x-96xy+768y+480=0\)
\(\Leftrightarrow8y^2-5x-3xy+24y+15=0\)
Đến chỗ này phân tích kiểu j được nhỉ
A, xin lỗi mk bị sai dấu, đây mới đúng nhé:
= \(8-4\sqrt{6}+3-\left(4-4\sqrt{6}+6\right)\)
= \(8-4\sqrt{6}+3-4+4\sqrt{6}-6\)
= 1
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb
=\(\sqrt{3+2\sqrt{3}+1}\)+\(\sqrt{3-2\sqrt{3}+1}\)
=\(\sqrt{\left(\sqrt{3}+1\right)^2}\)+\(\sqrt{\left(\sqrt{3}-1\right)^2}\)
=\(\sqrt{3}+1+\sqrt{3}-1\)
=\(2\sqrt{3}\)
k mk nha
B 24 nhé bn
tk mk đi
kb cho
Gọi k là số số chính phương có 3 chữ số => 100 <= k <= 999
<=> 10 <= √k <= 31 ( √k thuộc N )
Vậy có 24 số chính phương có 3 chữ số bắt đầu từ 10^2 tới 31^2