Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m = 1 vào hệ ta được hê phương trình:
-2x + y = 5
x + 3y = 1
=> -2x+ y = 5
2x + 6y = 2
Cộng từng vế của pt ta được:
7y = 7 => y = 1 => x = -2
Vậy (x;y) = (-2;1)
b) Từ PT thứ nhất trong hệ => y = 2mx + 5. Thế vapf PT thứ hai ta được: mx + 3. (2mx +5) = 1
<=> 7mx = -14 <=> mx = -2 (*)
+) Nếu m \(\ne\) 0 <=> (*) có nghiệm là x = -2/m => y = 1
Khi đó, hệ có nghiệm là (-2/m; 1)
+) Nếu m = 0 thì (*) <=> 0 = -2 Vô lí => (*) vô nghiệm <=> Hệ vô nghiệm
Vậy.................
c) Với m \(\ne\) 0 thì hệ có nghiệm x = -2/m và y = 1
Để x - y = 2 <=>( -2/m )- 1 = 2 <=> (-2/m) = 3 <=> m = -2/3 ( Thỏa mãn)
Vậy...................
2mx+y=2 và 8x+my=m+2
=>y=2-2mx và 8x+m(2-2mx)=m+2
=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)
=>2(m-2)(m+2)x=m-2 và y=-2mx+2
Nếu m=2 thì hệpt có vô số nghiệm
Nếu m=-2 thìhệ pt vn
Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)
Câu a : Với \(m=1\) hệ trở thành :
\(\left\{{}\begin{matrix}-2x+y=5\\x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\left(1-3y\right)+y=5\\x=1-3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Câu b : \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6mx+3y=15\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7mx=14\\mx+3y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{m}\\y=1\end{matrix}\right.\)
Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.
ĐK: $m\neq 0$
a) Khi $m=2,$ hệ phương trình là:
\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)
b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)
c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:
\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)
d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)
Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$
Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).
Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).
Vậy m = -2.