K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

Khẳng định đúng: c

26 tháng 2 2021

Ko biết vì tui học lớp 4

6 tháng 4 2020

HBH MJJM VJF UIJKNH ,MVNJF JMFJ HYIJ454 BN JV

21 tháng 6 2020

A B C D O F E x y

ABCD là hình vuông

\(\Rightarrow\widehat{AOB}=90^o\)hay \(\widehat{AOE}+\widehat{EOB}=90^o\)

Ta lại có : \(\widehat{xOy}=90^o\)hay \(\widehat{EOB}+\widehat{BOF}=90^o\)

\(\Rightarrow\widehat{AOE}=\widehat{BOF}\)( cùng phụ với \(\widehat{EOB}\))

+) Xét 2 tam giác : AOE và BOF , có :

OA = OB

\(\widehat{OAE}=\widehat{OBF}\left(=90^o\right)\)

\(\widehat{AOE}=\widehat{BOF}\left(cmt\right)\)

\(\Rightarrow\Delta AOE=\Delta BOF\left(g-c-g\right)\)

\(\Rightarrow S_{AOE}=S_{BOF}\)

\(\Rightarrow S_{AOE}+S_{OEB}=S_{BOF}+S_{OEB}\)

hay \(S_{AOB}=S_{OEBF}\)

Mà \(S_{AOB}=\frac{1}{2}S_{ABCD}=\frac{a^2}{4}\)

\(\Rightarrow S_{OEBF}=\frac{a^2}{4}\)

a) Xét tứ giác ABHK có 

\(\widehat{AHB}=\widehat{AKB}\left(=90^0\right)\)

\(\widehat{AHB}\) và \(\widehat{AKB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABHK là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

22 tháng 4 2021

a giúp e mấy câu kia luôn đc ko

27 tháng 3 2018

a, BH ^ AC và CM ^ AC Þ BH//CM

Tương tự => CH//BM

=> BHCM là hình bình hành

b, Chứng minh BNHC là hình bình hành

=> NH//BC

=> AH ^ NH =>  A H M ^ = 90 0

Mà  A B N ^ = 90 0 => Tứ giác AHBN nội tiếp

c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng

d,  A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN

AN = AM = 2R, AB = R 3 =>  A m B ⏜ = 120 0

S A O B = 1 2 S A B M = R 2 3 4

S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3

=> S cần tìm =  2 S A m B ⏜ = R 2 6 4 π - 3 3

30 tháng 12 2019

A B C D M E K

a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)

\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )

b ) Ta có : ME là đường trung bình của tam giác ABC 

\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)

\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)

\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)

ADME : hình chữ nhật 

\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)

c ) Dễ thấy AC là đường trung trực của MK

\(\Rightarrow AM=AK\)và \(CM=CK\)

Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )

\(\Rightarrow AM=AK=CM=CK\)

\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )

d ) Ta có : \(ME=\frac{1}{2}AB\)

\(\Rightarrow AB=2ME=MK\)

Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)

\(\Leftrightarrow AC=AB\) ( vì AB = MK )

\(\Leftrightarrow\Delta ABC\)cân tại A

Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông