K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

a, Biến đổi hệ phương trình ban đầu ta được hệ  x - y = 0 3 x + 3 y = 12

Từ đó tìm được x = 2, y = 2

b, Phương trình hoành độ giao điểm của d và (p):

x 2 - 2 x - m 2 + 2 m = 0 (1)

d cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung Oy <=> (1) có hai nghiệm trái dấu. Từ đó tìm được 

Kết luận 

NV
22 tháng 4 2021

Phương trình hoành độ giao điểm:

\(x^2=2x-m+9\Leftrightarrow x^2-2x+m-9=0\) (1)

(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung

\(\Leftrightarrow\) (1) có 2 nghiệm pb trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow m-9< 0\Rightarrow m< 9\)

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm 

\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)

để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu

khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)

24 tháng 3 2022

- Xét pt hoành độ gd....:

x2-(m-1)x-m-4=0 (1)

- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau

\(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)

Vậy với m>-4 thì ....

a: loading...

b: PTHĐGĐ là:

x^2-x-2=0

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

=>y=4 hoặc y=1

c: PTHĐGĐ là:

x^2-2x+m=0

Để (P) cắt (d1) tại hai điểm nằm về hai phía của trục tung thì m<0

14 tháng 7 2023

Cảm ơn

31 tháng 5 2017

đường thẳng \(d^'\)và \(d\)cắt nhau tại một điểm A trên trục tung nên điểm A có hoành độ \(x_a=0\)và tạo độ A thỏa mãn phương trình \(d^'\)nên :\(\Rightarrow y_a=-2.0+1=1\)\(\Rightarrow A\left(0;1\right)\)Mà do a là giao điểm của 2 đường \(d;d^'\)nên toạn độ A cũng thỏa mãn phương trình của \(d\)\(\Rightarrow1=-m^2+m+1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow m\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

câu b :

Xét phương trình hoành độ gia điểm của P và d có :

\(x^2=2mx-m^2+m+1\Leftrightarrow x^2-2mx+m^2-m-1=0\)

để hai đồ thị cắt nhau tại 2 điểm phân biệt thì \(\Delta^'=m^2+m^2-m-1=2m^2-m-1>0\)

\(\left(m-1\right)\left(2m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -\frac{1}{2}\\m>1\end{cases}}@\)

khi đó theo vieet có :\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m^2+m+1\end{cases}}\)

\(\Rightarrow y_1+y_2+2\left(x_1+x_2\right)=22\)với \(y_1=x^2_1;y_2=x_2^2\)

\(\Rightarrow\left(\left(x_1+x_2\right)^2-2x_1.x_2\right)+\left(x_1+x_2\right)2=22\)thay vieet ta có :

\(\left(2m\right)^2-2\left(-m^2+m+1\right)+2.2m=22\)

\(\Leftrightarrow6m^2+2m-24=0\Leftrightarrow\orbr{\begin{cases}m=\frac{-1+\sqrt{144}}{6}\\m=\frac{-1-\sqrt{144}}{6}\end{cases}}\)thỏa mãn @ 

Kết luận nghiệm

tính denta sai rùi rùi bạn ơi 

phải là 145 chứ ko phải 144 

15 tháng 3 2022

lỗi

15 tháng 3 2022

đc chưa bạn?

 

a: (d) có hệ số góc là m nên (d): y=mx+b

Thay x=-1 và y=-2 vào (d), ta được:

\(m\cdot\left(-1\right)+b=-2\)

=>b-m=-2

=>b=m-2

=>(d): y=mx+m-2

Phương trình hoành độ giao điểm là:

\(-x^2=mx+m-2\)

=>\(-x^2-mx-m+2=0\)

=>\(x^2+mx+m-2=0\)(1)

\(\text{Δ}=m^2-4\cdot1\cdot\left(m-2\right)\)

\(=m^2-4\left(m-2\right)\)

\(=m^2-4m+8=\left(m-2\right)^2+4>=4\forall m\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì phương trình (1) phải có hai nghiệm phân biệt trái dấu

=>1(m-2)<0

=>m-2<0

=>m<2

26 tháng 3 2022

1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0) 

<=> \(0=6+b\Leftrightarrow b=-6\)

2, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-1\right)x-m+4=0\)

Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay 

\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)