Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Đồ thị hàm số đã cho tiếp xúc với trục hoành khi và chỉ khi hệ phương trình sau có nghiệm
Vậy ta chỉ có một giá trị nguyên của tham số m thỏa mãn điều kiện đề bài là m=1
Chọn đáp án A
Phương pháp
Nhẩm nghiệm của phương trình hoành độ giao điểm, từ đó tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.
Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình x 2 + ( m + 3 ) x + m 2 = 0 phải có hai nghiệm phân biệt khác 1
Do đó với -1<m<3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt
Ta có a = -1 < 0 và y ' = 0 ⇔ x = 0 x 2 = m + 2 nên dựa vào hình dáng của đồ thị hàm số ta xét các trường hợp sau để đáp ứng yêu cầu bài toán.
Hàm số chỉ có một cực trị âm ⇔ m + 2 ≤ 0 y 0 < 0 ⇔ - 4 < m ≤ - 2
Hàm số có ba cực trị và giá trị cực đại âm
⇔ m + 2 > 0 y ± m + 2 < 0 ⇔ - 2 < m < 0
Qua hai trường hợp trên ta thu được -4 < m < 0.
Do m ∈ Z nên m ∈ - 3 ; - 2 ; - 1 .
Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán
Đáp án C
Chọn đáp án A.