Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Ta coi 3 bạn nữ là vị trí thì số cách sắp xếp 6 là 6!, sau đó xếp 3 bạn nữ vào vị trí đó là 3! Nên số cách sắp xếp là 6!.3!
Đáp án C
Phương pháp
Sử dụng kiến thức về chỉnh hợp.
Lưu ý rằng nếu chọn các phần tử rồi mang ra sắp xếp thì ta sẽ sử dụng chỉnh hợp.
Cách giải:
Mỗi cách xếp 3 bạn vào 5 chiếc ghế là một chỉnh hợp chập 3 của 5 phần tử nên số cách xếp có được là A 5 3 (cách).
Mỗi cách xếp 3 bạn vào 5 chiếc ghế là một chỉnh hợp chập 3 của 5 phần tử nên số cách xếp có được là A 5 3 (cách).
Chọn đáp án C.
Xét 2 khả năng:
+) Trường hợp ở giữa có 3 ghế có thể xếp nam ở bên phải hoặc trái nên số cách xếp
là 2 . 4! . 2! = 96
+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống. Tương ứng số cách sắp xếp là 2 . 2 . 4! . 2! = 192
Vậy số cách sắp xếp là 192 + 96 = 288
Đáp án cần chọn là C
Đáp án là A
Vì có 5 bạn học sinh
⇒ nên số cách cho bạn Chi ngồi chính giữa là:
1 cách.
Bốn bạn còn lại xếp vào bốn ghế
⇒ chính là hoán vị của 4 phần tử nên có 4! cách.
Vậy có 1 . 4 ! = 24 cách