Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: 5 học sinh lớp C đứng cách nhau đúng 1 vị trí
- Chọn vị trí cho nhóm 5 học sinh lớp C: 2 cách (đứng đầu hàng hoặc ko đứng đầu hàng)
- Hoán vị 5 học sinh lớp C: 5! cách
- Hoán vị 5 học sinh lớp A và B: 5! cách
\(\Rightarrow2.5!.5!\) cách cho TH1
TH2: 5 học sinh lớp C trong đó có 2 bạn đứng cách nhau 2 vị trí
Chọn vị trí cho 2 người kề nhau: 4 cách
Hoán vị 5 học sinh lớp C: 5! cách
Chọn 1 học sinh lớp A, 1 học sinh lớp B xếp vào 2 vị trí liền kề nói trên: \(C_2^1.C_3^1.2!\) cách
Xếp vị trí cho 3 người còn lại: 3! cách
\(\Rightarrow4.5!.C_2^1.C_3^1.2!.3!\) cách cho TH2
Tổng cộng: \(TH1+TH2=...\)
Chọn C
Để xếp 9 em học sinh thành một hàng dọc ta thực hiện ba hành động liên tiếp
* Sắp xếp 3 học sinh lớp B. Có 3! cách.
* Sắp xếp 2 học sinh lớp A đứng cạnh các học sinh lớp B sao cho giữa hai học sinh lớp A không có học sinh lớp B. Có A 4 1 .2! cách.
* Lần lượt sắp xếp 4 học sinh lớp C còn lại đứng cạnh các học sinh trên. Có A 9 4 cách.
Vậy có tất cả 3! A 4 1 .2!. A 9 4
Bình luận: Trong đề thi thử THPT chuyên Thái Nguyên lần 2 trong câu hỏi này không có đáp án 145152 mà thay bởi đáp án 145112. Tôi thiết nghĩ lỗi do người làm đề đã đánh máy nên đã tự ý đổi lại một đáp án khác mà tôi nghĩ chính xác hơn.
a: Coi 3 bạn nữ như 1 người
Số cách xếp là:
\(8!\cdot3!\)(cách)
b: Số cách xếp là:
\(10!-8!\cdot3!\left(cách\right)\)
Coi 5 em là 1 phần tử.
Số cách sắp xếp thoả mãn yêu cầu bài toán là \(6!=720\) cách.
Eo ơi, đừng!! Tách ra đi bạn ơi, để thế này khủng bố mắt người đọc quá :(
Mà hình như mấy bài này có trong tập đề của thầy tui gởi nè :v
Xếp Phúc Đức cạnh nhau có \(2!\) cách
Xếp 4 học sinh nữ có \(4!\) cách
4 học sinh nữ tạo ra 5 khe trống, xếp cặp Phúc-Đức và 3 học sinh nam còn lại vào 5 khe trống này có: \(A_5^4\) cách
\(\Rightarrow2!.4!.A_5^4\) cách xếp thỏa mãn
Chọn D
Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử. Vậy có 5! = 120 cách.