Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)
a) Ta có: \(a^2+2a-4=0\)
\(\Leftrightarrow\left(\sqrt{5}-1\right)^2+2\left(\sqrt{5}-1\right)-4=0\)
\(\Leftrightarrow6-2\sqrt{5}+2\sqrt{5}-2-4=0\)
\(\Leftrightarrow0=0\)(đúng)
b) Ta có: \(\left(a^3+2a^4-4a+2\right)^{10}\)
\(=\left[a\left(a^2+2a-4\right)+2\right]^{10}\)
\(=2^{10}=1024\)
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Bạn rút gọn biểu thức trên đi
rồi thay a = căn 2 , b= 1 vào cái biểu thức mà bạn vừa rút gọn là ra kết quả cuối cùng ngay mà
b: =>a=5-b
\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)
\(\Leftrightarrow2b^2-10b+25-13=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)
hay \(b\in\left\{2;3\right\}\)
\(\Leftrightarrow a\in\left\{3;2\right\}\)