Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I J K M N P D E F
I, J, K lần lượt là chân đường cao hạ từ A, B, C; H là giao điểm ba đường cao
M, N, P lần lượt là trung điểm của BC , AC, AB
D, E, F lần lượt là trung điểm của HA, HB, HC
O là giao điểm của NE và PF
+) NP là đường trung bình tam giác ABC => NP//=1/2 BC (1)
EF là đường trung bình tam giác HCB => EF//=1/2 BC (2)
Từ (1), (2) => NFEP là hình bình hành (3)
NF là đường trung bình tam giác ACH => NF//AH=> NF//AI mà AI vuông BC , BC//EF => NF vuông EF (4)
Từ (3), (4) => NFEP là hình chữ nhật => Tâm đường tròn ngoại tiếp NFEP là O giao của FP và NE
và O là trung điểm FP, O là trung điểm NE
+) Tương tự NDEM là hình chữ nhật => Tâm đường tròn ngoại tiếp NDEM là O ( trung điểm NE)
=> O là trung điểm DM
+) Tam DIM vuông tại I => Tâm đường tròn ngoại tiếp DIM là O trung điểm DM
+) Tương tự O là tâm đường tròn ngoại tiếp tam giác FJP, EKN
=> Vậy 9 điểm trên cùng thuộc đường tròn tâm O đường kính NE
Câu hỏi của Mavis Vermillion - Toán lớp 9 - Học toán với OnlineMath Em tham khảo ở link này nhé!
A B C H O D E I J G K A' U X Y Z M N V S T L
Bổ sung đề: D là điểm bất kì nằm trên (O).
Gọi (U) là đường tròn ngoại tiếp \(\Delta\)DAH, kẻ đường kính AL của (U), gọi DA' cắt BC tại S.
Đường thẳng AI cắt (BHC) tại Y, Z đối xứng với A qua E. Đường tròn (A'YZ) tâm V cắt (BHC) tại X khác Y.
Dễ thấy bốn điểm O,I,E,S đồng viên và OS là đường kính của (OEI)
Vì \(V_{\left(A',2\right)}:\left(OEI\right)\rightarrow\left(ADH\right)\)nên S là trung điểm của A'L
Ta thấy (ABC) và (BHC) đối xứng nhau qua trung điểm cạnh BC nên A đối xứng với Y qua I
Từ đó tứ giác AA'YH là hình bình hành, AA'ZD cũng là hình bình hành. Suy ra (ADH) = (A'ZY)
Hay \(\Delta\)AUH = \(\Delta\)A'VY, UL // A'V. Đồng thời có S là trung điểm A'L, vậy thì S cũng là trung điểm UV
Từ hai tam giác AUH và A'VY bằng nhau có các cặp cạnh song song, suy ra UV = 2SV = HY
Gọi T là điểm đối xứng với H qua S. Khi đó SV là đường trung bình của \(\Delta\)HTY, suy ra V là trung điểm YT
Hay YT là đường kính của (V). Cũng dễ có YH là đường kính của (BHC). Suy ra H,S,T,X thẳng hàng (^YXT = ^YXH = 900)
Ta có \(\overline{SH}.\overline{SX}=\overline{SB}.\overline{SC}=\overline{SA'}.\overline{SD}\)nên bốn điểm D,H,A',X đồng viên (1)
Mặt khác gọi J' là trung điểm của AX thì \(V_{\left(A,2\right)}:\left(OJIE\right)\rightarrow\left(A'XYZ\right)\)nên J' thuộc (OEI)
Tương tự, với M,N là trung điểm AB,AC thì \(V_{\left(A,2\right)}:\left(MIJN\right)\rightarrow\left(BYXC\right)\)nên J' thuộc (Euler)
Từ đó J trùng J'. Suy ra \(V_{\left(A,2\right)}:G\rightarrow D;K\rightarrow H;O\rightarrow A';J\rightarrow X\) (2)
Từ (1) và (2) suy ra bốn điểm G,K,O,J đồng viên (đpcm).
Vì \(\widehat{ABO}\)là góc tạo bởi tia tiếp tuyến AB và dây cung BD ( đường kính AB )
\(\Rightarrow\widehat{ABO}=\frac{1}{2}.\widehat{BOD}=\frac{1}{2}.180^o=90^o\)
Chứng mình ương tự với \(\widehat{ACO}\), suy ra \(\widehat{ACO}=90^o\)
Xét tứ giác ABOC có :
Góc ABO và góc ACO là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)
=> Tứ giác ABOC nội tiếp đường tròn ( theo tính chất tổng hai góc đối bằng 180 độ ... )
Gọi I là trung điểm của AB
Có tam giác ABO vuông tại B, trung tuyến là BI
=> BI = 1/2.AO=AI=IO (1)
Tam giác ACO vuông tại C, có trung tuyến là CI
=> CI=1/2.AO=AI=IO (2)
Từ (1) và (2) => BI = AI = IO = IC
=> I cách đều 4 đỉnh tứ giác ABOC
=> I là tâm đường tròn ngoại tiếp tứ giác ABOC , có bán kinh R= 1/2.AO
a) Có goc BAC=90độ=>góc EAF=90độ
HE vuong goc voi AB =>góc HEA=90độ
HF vuong goc voi AC=>góc HFA=90độ
==>AEHF là hình chữ nhật
Có góc ABC=góc EHA
mà góc EHA= góc EFA
góc ABC+OAC=90 độ
=>góc OAC+góc AFE=90 độ =>OA vuông góc với EF
b)có góc PBA=góc PFA
góc APC=góc ABC
mà góc ABC= góc AFP
=>goca PBA= góc APE=>tam giác AEP đồng dạng vs APB (gg)
=>AP^2=AE.AB
mà AH^2=AE.AB
=>tam giac PAH cân
c)
Chứng minh tam giác DKC đồng dạng với tam giác DBA (g-g) , Suy ra DK.DA=DC.DB (1)
Chứng minh Tứ giác BEFC nội tiếp ( góc AEF = góc FCH cùng bắng với góc AHF )
Từ đó chứng minh hai tam giác DFC và DBE đồng dạng (g-g), Suy ra DF.DE=DC.DB (2)
Từ (1) và (2) suy ra DK.DA = DF.DE. Từ đó chứng minh tam giác DKF đồng dạng với DEA (theo trường hợp c-g-c)
Suy ra góc DKF = góc DEA
Suy ra tứ giác AEFK nội tiếp
d) chứng minh được OA vuông góc với PQ.
Suy ra cung AP=cung AQ. suy ra ˆADP=ˆACKADP^=ACK^
=> KFCD nội tiếp => ΔIFC∼ΔIDKΔIFC∼ΔIDK
=> IC.ID=IF.IK. rồi cm IH^2=IF.IK dựa vào tứ giác AKFH nội tiếp do tứ giác AEFK nội tiếp