K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

A B C H I J K M N P D E F

I, J, K lần lượt là chân đường cao hạ từ A, B, C; H là giao điểm ba đường cao

M, N, P lần lượt là trung điểm của BC , AC, AB

D, E, F lần lượt là trung điểm của HA,  HB, HC

O là giao điểm của NE và PF

+)  NP là đường trung bình tam giác ABC => NP//=1/2 BC (1)

EF là đường trung bình tam giác HCB => EF//=1/2 BC (2)

Từ (1), (2) => NFEP là hình bình hành (3)

NF là đường trung bình tam giác ACH => NF//AH=> NF//AI mà AI vuông BC , BC//EF => NF vuông EF (4)

Từ (3), (4) => NFEP là hình chữ nhật  => Tâm đường tròn ngoại tiếp NFEP  là O giao của FP và NE

và O là trung điểm FP, O là trung điểm NE

+)  Tương tự NDEM là hình chữ nhật => Tâm đường tròn ngoại tiếp NDEM là O ( trung điểm NE)

=> O là trung điểm DM

+)  Tam DIM vuông tại I => Tâm đường tròn ngoại tiếp DIM là O trung điểm DM

+) Tương tự O là tâm đường tròn ngoại tiếp tam giác FJP, EKN

=> Vậy 9 điểm trên cùng thuộc đường tròn tâm O đường kính  NE

11 tháng 11 2018

Câu hỏi của Mavis Vermillion - Toán lớp 9 - Học toán với OnlineMath Em tham khảo ở link này nhé!

27 tháng 11 2015

Đây là đường tròn Ơ - le bạn xem chứng minh trên google

27 tháng 11 2015

đồng ý vói Tạ Duy Phương

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE