K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2020

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :

\(a+b\ge2\sqrt[2]{ab}\)

\(b+c\ge2\sqrt[2]{bc}\)

\(c+a\ge2\sqrt[2]{ca}\)

Nhân theo vế các bất đẳng thức cùng chiều ta được :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(2\sqrt[2]{ab}\right)\left(2\sqrt[2]{bc}\right)\left(2\sqrt[2]{ca}\right)\)

\(< =>B\ge8\sqrt[2]{a^3b^3c^3}=8abc\)

Mặt khác theo giả thiết ta có : \(abc=8\)

Khi đó \(B\ge8.8=64\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)

Vậy \(Min_B=64\)khi \(a=b=c=2\)

11 tháng 7 2020

sửa lại cho mình  dòng 7 trong căn là mũ 2 nhé , đánh lộn 

8 tháng 10 2017

áp dụng BĐT Bu-nhi-a ta có: 

\(\left(a+b+c+d\right)^2\le\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right).\)

<=>\(2^2\le4\left(a^2+b^2+c^2+d^2\right)\)

<=>\(\left(a^2+b^2+c^2+d^2\right)\ge1\)

=> GTNN của a^2 +b^2 +c^2 +d^2 là 1 <=> a=b=c=d=1/2

28 tháng 4 2017

P=abc/(2bc+c^2)+abc/(2ac+a^2)+abc/(2ab+b^2)

P=1/(2bc+c^2)+1/(2ac+a^2)+1/(2ab+b^2)

áp dụng BĐT cô-si swat ta có 

P>=(1+1+1)^2/(a+b+c^2)=9/(a+b+c)^2>=9/((3 căn bậc 3 abc)^2=9/9=1 

dấu = xảy ra khi a=b=c=1 

29 tháng 4 2017

Huy Nguyễn Đức ngược dấu r

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

14 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{1}{\left(a+2\right)+\left(a+2\right)+\left(b+2\right)}+\frac{1}{\left(b+2\right)+\left(b+2\right)+\left(c+2\right)}+\frac{1}{\left(c+2\right)+\left(c+2\right)+\left(a+2\right)}\)

\(\le\frac{1}{9}\left(\frac{2}{a+2}+\frac{1}{b+2}\right)+\frac{1}{9}\left(\frac{2}{b+2}+\frac{1}{c+2}\right)+\frac{1}{9}\left(\frac{2}{c+2}+\frac{1}{a+2}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)\)

Dễ dàng cm BĐT \(\frac{1}{x+1}+\frac{1}{y+1}\ge\frac{2}{1+\sqrt{xy}}\)

\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{1}{2}\left(\frac{1}{1+\frac{a}{2}}+\frac{1}{1+\frac{b}{2}}+\frac{1}{1+\frac{c}{2}}\right)\)

\(\le\frac{1}{2}.\frac{3}{1+\sqrt[3]{\frac{abc}{8}}}=\frac{3}{4}\Rightarrow P\le\frac{1}{4}\)

Xảy ra khi \(a=b=c=2\)

15 tháng 7 2017

À viết ngược dấu BĐT phụ r` :v

\(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) mới đúng nhé :v

\(\Leftrightarrow\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x+1\right)\left(y+1\right)\left(1+\sqrt{xy}\right)}\le0\)