K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Đáp án là C

Số các hoán vị về màu bi khi xếp thành dãy là 3!

Số cách xếp 3 viên bi đen khác nhau thành dãy là 3!

Số cách xếp 4 viên bi đỏ khác nhau thành dãy là 4!

Số cách xếp 5 viên bi xanh khác nhau thành dãy là 5!

Số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là 3!. 3!. 4!. 5! =  103680 cách.

19 tháng 3 2019

Đáp án : C

Để xếp bi thỏa mãn yêu cầu thì các viên bi phải được xếp xen kẽ nhau.

Phương án 1: Vị trí đầu tiên là viên bi đỏ, sau đó xếp tiếp các viên bi còn lại. Vì yêu cầu xếp xen kẽ nên chỉ có 1 cách xếp trong tình huống này.

Phương án 2: Vị trí đầu tiên là viên bi đen. Tương tự như trên, chỉ có 1 cách xếp.

Vậy theo quy tắc cộng, số cách xếp bi thỏa mãn là 1 + 1 = 2 cách.

NV
21 tháng 12 2022

a.

Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi

b.

Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ

Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách

c.

Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh

Số cách lấy là:

\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách

Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?

31 tháng 5 2019

Xếp 6 viên bi xanh có 6! cách xếp, khi đó 6 viên bi xanh sẽ tạo thành 7 chỗ trống.

Xếp 4 viên bi vàng vào 7 chỗ trống đó là A 7 4  cách.

Do đó có   A 7 4 . 6 ! = 604800 cách xếp.

Chọn A.

2 tháng 1 2017

Xếp 5 thẻ đen có 5! cách xếp, khi đó 5 thẻ đen tạo thành 6 chỗ trống.

Xếp 3 thẻ trắng vào 6 chỗ trống thì không có 2 thẻ trắng nào cạnh nhau: có   cách.

 Do đó có  cách xếp.

Chọn D.

10 tháng 7 2021

 

a, Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\) cách

Số cách chọn 6 viên chỉ màu vàng là \(C_8^6=28\) cách

Số cách chọn 6 viên chỉ màu xanh là \(C_{10}^6=210\) cách

\(\Rightarrow\) có \(100947-28-210=100709\) cách thỏa mãn.

b, Số cách chọn 6 viên có đủ 3 màu là \(5.8.10=400\)

Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\)

\(\Rightarrow\) có \(100947-400=100547\) cách thỏa mãn.

20 tháng 9 2019

a) Việc chọn 3 viên bi khác màu phải tiến hành 3 hành động liên tiếp: chọn 1 bi đỏ trong 7 bi đỏ nên có 7 cách chọn, tương tự có 8 cách chọn 1 bi xanh và 5 cách chọn 1 bi vàng. Theo quy tắc nhân ta có: 7*8*5 = 280 cách.

Vậy đáp án là B

Nhận xét: học sinh có thể nhầm:

- Sử dụng quy tắc cộng để có: 7 +8 +5 = 20 cách (phương án A)

Chọn 3 viên bi trong 20 viên bi nên có C203=1140 cách (phương án D)

- Hoặc chọn thứ tự 3 viên bi trong 20 viên bi nên có: 20*19*18=6840 cách (phương án C)

Đáp án đúng B

26 tháng 7 2018

b) Muốn lấy được 2 viên bi khác màu từ trong túi đã cho xảy ra các trường hợp sau:

- Lấy 1 bi đỏ và 1 bi xanh: có 7 cách để lấy 1 bi đỏ và 8 cách để lấy 1 bi xanh. Do đó có 7*8 =56 cách lấy

- Lấy 1 bi đỏ và 1 bi vàng: có 7 cách lấy 1 bi đỏ và 5 cách lấy 1 bi vàng.

Do đó co 7*5=35 cách lấy

- Lấy 1 bi xanh và 1 bi vàng: có 8 cách để lấy 1 bi xanh và 5 cách để lấy 1 bi vàng.

Do đó có 8*5 = 40 cách để lấy

- Áp dụng quy tắc cộng cho 3 trường hợp, ta có 56 + 35 +40 = 131 cách

Vì vậy chọn đáp án là C

Nhận xét: học sinh có thể nhầm

- Coi việc lấy hai viên bi khác màu không là hành động liên tiếp, nên đã sử dụng quy tắc cộng (7+8) + (8+5) + (5+7) = 40 cách lấy (phương án A)

- Nhầm lẫn giữa quy tắc cộng và quy tắc nhân nên cho kết quả là: (7+8)*(8+5)*(5+7)= 15*13*12=2340 cách (phương án D)

- Coi 3 trường hợp lấy 2 viên bi khác màu là ba hành động liên tiếp, nên đã sử dụng quy tắc nhân 56*35*40 = 78400 cách (phương án B)

Đáp án đúng là C