K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
FL
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
0
DK
0
DS
1
AH
Akai Haruma
Giáo viên
30 tháng 6
Lời giải:
Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.
Khi đó:
$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$
Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.
$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.
$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).
PL
0
TQ
0
Ta có: 1 chia 3 dư 1
Ta có:9 chia hết cho 3
=>92k chia hết cho 3
Ta có: 77 = 2 (mod3)
=>772k = 22k (mod 3)
=>772k = 4k (mod 3)
Mà 4 = 1 (mod 3)
=> 4k = 1k (mod 3)
Nên 772k = 1 (mod 3)
=> 772k chia 3 dư 1
Ta có: 1977 chia hết cho 3
=>19772k chia hết cho 3
Vậy A chia 3 dư 1+0+1+0 = 2
Mà số chính phương chia 3 chỉ có thể dư 1 hoặc 2
Vì vậy A không phải là số chính phương (đpcm)
Làm đi,ai giúp mk với