Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n5 +1999n +2017 = n5 - n+2000n + 2015 +2 ( n E Z )
Ta thấy: n5 +1999n +2017 = n5 - n+2000n + 2015 +2 ( n E Z ) chia cho 5 dư 2
vì không có số chính phương nào chia 5 dư 2
Vậy n5 +1999n +2017 ( n E Z ) không phải là số chính phương
Lời giải:
Sửa đề thành \(n\in\mathbb{N}\), vì nếu $n$ nguyên âm thì biểu thức không nguyên.
Đặt \(A=n^5+1999n+2017=n^5-n+2000n+2017\)
\(=n(n^4-1)+2000n+2017\)
\(=n(n^2-1)(n^2+1)+2000n+2017\)
--------------
Ta biết đến tính chất rất quen thuộc là một số chính phương chia $5$ thì dư $0,1$ hoặc $4$
Nếu \(n^2\equiv 0\pmod 5\Rightarrow n\equiv 0\pmod 5\) (do $5$ là snt)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Nếu \(n^2\equiv 1\pmod 5\Rightarrow n^2-1\equiv 0\pmod 5\)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Nếu \(n^2\equiv 4\pmod 5\Rightarrow n^2+1\equiv 5\equiv 0\pmod 5\)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Tóm lại \(n(n^2-1)(n^2+1)\vdots 5, \forall n\in\mathbb{N}\)
\(\Rightarrow A=n(n^2-1)(n^2+1)+2000n+2015+2\) chia $5$ dư $2$. Do đó $A$ không thể là scp vì scp chia $5$ dư $0,1$ hoặc $4$
Ta có đpcm.
bon so lien tiep chia het cho 8
A=8k+3
so chinh phuong le chi co dang 8k+1
A ko cp
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
Lời giải:
Xét:
$M=1+10+....+10^n$
$10M=10+10^2+....+10^{n+1}$
$10M-M=10^{n+1}-1$
$M=\frac{10^{n+1}-1}{9}$
$A=M.(10^{n+1}+5)+1=\frac{(10^{n+1}-1)(10^{n+1}+5)}{9}+1$
$=\frac{10^{2n+2}+4.10^{n+1}-5+9}{9}$
$=\frac{10^{2n+2}+4.10^{n+1}+4}{9}$
$=\frac{(10^{n+1}+2)^2}{9}$
$=\left(\frac{10^{n+1}+2}{3}\right)^2$
Ta thấy: $10^{n+1}+2\equiv 1^{n+1}+2=3\equiv 0\pmod 3$
Do đó: $\frac{10^{n+1}+2}{3}\in\mathbb{N}$
Suy ra $A$ là scp.