Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử s chia hết cho 49 => 4S=4n^2+12n-152 = (2n^2 + 3)^2 - 161 chia hết cho 7=> (2n^2 + 3)^2 chia hết cho 7 ( do 161 chia hết cho 7) => 2n^2 + 3 chia hết cho 7 => (2n^2 + 3)^2 chia hết cho 49 nhân ra ta đc 4n^2 + 12 n +9 chia hết cho 49 => 4n^2 + 12 n +9 -161 ko chia hết cho 49 (do 161 ko chia hết cho 49) => ko xảy ra điều giả sử => đpcm
Ta có:
\(n^2+3n+11\)
\(=n^2+3n+18-7\)
\(=\left(n+2\right)\left(n+9\right)-7\)
Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7
Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7
Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49
Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\)
Ta có (3n+1)^2-49
=9n^2+6n+1-49
=3n(3n+2)-48
do 3n(n+2) chia het cho 3
48 chia het cho 3
=>dpcm
Giả sử n2+3n-38 chia hết cho 49
=> n2 + 3n - 38 chia hết cho 7
=> n2 -4n + 7n -42 + 4 chia hết cho 7
=> n2 - 4n +4 +7n-42 chia hết cho 7
=> (n-2)2 chia hết cho 7
=> n-2 chia hết cho 7
Vậy n có dạng 7k + 2
Thay n=7k+2 vào n2+3n-38 ta được:
(7k + 2)2 +3(7k + 2) - 38 = 49k2 + 28k + 4 + 21k + 6 - 38 = 49k2 +49k -28 không chia hết cho 49 (trái với điều giả sử)
Vậy n2 + 3n - 38 không chia hết cho 49
thay n =2 ra kq -28 chia hết cho 7