K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Giả sử n2+3n-38 chia hết cho 49

=> n+ 3n - 38 chia hết cho 7

=> n-4n + 7n -42 + 4 chia hết cho 7

=> n2 - 4n +4 +7n-42 chia hết cho 7

=> (n-2)2 chia hết cho 7

=> n-2 chia hết cho 7

Vậy n có dạng 7k + 2

Thay n=7k+2 vào n2+3n-38 ta được:

(7k + 2)2 +3(7k + 2) - 38 = 49k2 + 28k + 4 + 21k + 6 - 38 = 49k2 +49k -28 không chia hết cho 49 (trái với điều giả sử)

Vậy n2 + 3n - 38 không chia hết cho 49

26 tháng 5 2017

thay n =2 ra kq -28 chia hết cho 7

28 tháng 8 2016

giả sử s chia hết cho 49 => 4S=4n^2+12n-152 = (2n^2 + 3)^2 - 161 chia hết cho 7=> (2n^2 + 3)^2   chia hết cho 7 ( do 161 chia hết cho 7)  => 2n^2 + 3 chia hết cho 7 => (2n^2 + 3)^2   chia hết cho 49 nhân ra ta đc 4n^2 + 12 n +9  chia hết cho 49 => 4n^2 + 12 n +9  -161 ko chia hết cho 49 (do 161 ko chia hết cho 49) => ko xảy ra điều giả sử => đpcm

2 tháng 10 2023

Ta có:

\(n^2+3n+11\) 

\(=n^2+3n+18-7\)

\(=\left(n+2\right)\left(n+9\right)-7\)

Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7

Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7

Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49 

Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\) 

 

23 tháng 6 2021

Bạn xem lời giải ở đây nha

23 tháng 6 2021

BẠN XEM LỜI GIẢI Ở ĐÂY NHA

13 tháng 11 2015

chưa học đến

cô dạy chậm không cho mình chuyển bậc

13 tháng 11 2015

tick cho mình rồi mình làm cho

Ta có (3n+1)^2-49

        =9n^2+6n+1-49

       =3n(3n+2)-48

do 3n(n+2) chia het cho 3

     48 chia het cho 3

  =>dpcm

26 tháng 7 2018

\(49-\left(3n-7\right)^2\)

\(=49-\left(9n^2-42n+49\right)\)

\(=-9n^2+42n\)

\(=-3\left(3n^2-14n\right)\)\(⋮\)\(3\)