K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2015

Nhận xét: Với 2 số a; b bất kì ta có   (a - b)2 \(\ge\) 0 => a2 - 2ab + b2 \(\ge\) 0 =>  a2 + b2 \(\ge\)  2ab

Áp dụng ta có: 5 = 12 + 22  \(\ge\) 2.1.2

                    13 = 22 + 32 \(\ge\) 2.2.3

                    25 = 32 + 42 \(\ge\) 2.3.4

..........

                 20152 + 20162 \(\ge\) 2.2015. 2016

=> \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2015^2+2016^2}\le\frac{1}{2.1.2}+\frac{1}{2.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2.2015.2016}\)

=> \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2015^2+2016^2}\le\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)

=> \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2015^2+2016^2}\le\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\le\frac{1}{2}\left(1-\frac{1}{2016}\right)

12 tháng 4 2016

TA CÓ        \(\left(X-Y\right)^2\ge0\Rightarrow X^2-2\cdot X\cdot Y+Y^2\ge0\Rightarrow X^2+Y^2\ge2\cdot X\cdot Y\)    \(\Rightarrow\frac{1}{5}=\frac{1}{1^2+2^2}<\frac{1}{2}\cdot\frac{1}{1\cdot2}\)

TƯƠNG TỰ TA CÓ  \(\frac{1}{13}<\frac{1}{2}\cdot\frac{1}{2\cdot3}\) ................\(\frac{1}{2015^2+2016^2}<\frac{1}{2}\cdot\frac{1}{2015\cdot2016}\)

\(\Rightarrow\)  \(\frac{1}{5}+\frac{1}{13}+..........+\frac{1}{2015^22016^2}<\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.........+\frac{1}{2015\cdot2016}\right)=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2016}\right)\)

VÌ \(1-\frac{1}{2016}<1\Rightarrow\frac{1}{2}\cdot\left(1-\frac{1}{2016}\right)<\frac{1}{2}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+....+\frac{1}{2015^2+2016^2}<\frac{1}{2}\)

14 tháng 6 2019

Gợi ý: tính 2M rồi sai đó lấy 2M - M = M = .... (kết quả gọn hơn)

Làm thế là giải được thôi

14 tháng 6 2019

đánh bàn phím nhầm, sau đó chứ ko phải sai đó

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\left(\dfrac{2015}{2}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)+1}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}=\dfrac{1}{2017}\)

8 tháng 5 2016

Uchiha Sasuke gửi cho ai vậy ??????

NHớ ****

8 tháng 5 2016

cho mình

23 tháng 4 2018

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)