K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

a7-a chứ nhỉ :))

a^7 - a = a.(a^6 - 1)= a.(a^3 -1).(a^3+1)=a.(a-1).(a+1).(a^2-a+1).(a^2+a+1)

Đến đây xét các TH a= 7k , 7k+1.... thay vào một trong mấy thừa số vừa tách để CM chia hết cho 7

có một cách phân tích ra thành tích 7 số nguyên liên tiếp nhưng tui ngại đánh máy :v

19 tháng 7 2019

Có ai làm được ko ?

\(a^7-a=a\left(a^6-1\right)=a\left(a^3+1\right)\left(a^3-1\right)\) 

               

5 tháng 8 2019

Rồi sao nữa ?

25 tháng 7 2023

�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]

=�(�3−7�−6)(�3−7�+6)

=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)

⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

25 tháng 7 2023

18 tháng 9 2018

d) ( n + 7 )2 - ( n - 5 )2

= n2 + 14n + 49 - n2 + 10n - 25

= 24n + 24

= 24 ( n + 1 ) chia hết cho 24 ( đpcm )

18 tháng 9 2018

e) 

( 7n + 5 )2 - 25

= ( 7n + 5 )2 - 52

= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )

= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

4 tháng 9 2019

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
4 tháng 9 2019

a,25^n.24

mà 25^n :5

20 tháng 8 2020

Nhan xet \(n^2\equiv0,1,2,4\left(mod7\right)\forall n\inℕ\) , \(7n⋮7\) va \(2020\equiv4\left(mod7\right)\)

nen suy ra \(n^2+7n+20204\equiv4,5,6,1\left(mod7\right)\)

Vay \(^{n^2+7n+2020̸}\) khong chia het cho 7

22 tháng 8 2020

lm thế khó hỉu lém ak mod là j ak e chx hok

7 tháng 1 2019

a,\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)\)

\(=a\left(a+2\right)\left(a+1\right)⋮3⋮2\)

                                               \(⋮6\left(ĐPCM\right)\)

b,\(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=2a^2-3a-2a^2-2a\)

\(=-5a⋮5\left(ĐPCM\right)\)

7 tháng 11 2017

Ta có: \(a^3b-ab^3\)

\(=a^3b-ab-ab^3+ab\)

= \(ab\left(a-1\right)\left(a+1\right)-ab\left(b-1\right)\left(b+1\right)\)

Mà 3 số tự nhiên liên tiếp luôn chia hết cho 6

=> \(ab\left(a-1\right)\left(a+1\right)⋮6,ab\left(b-1\right)\left(b+1\right)⋮6\)

=> \(a^3b-b^3a⋮6\Rightarrowđpcm\)

7 tháng 11 2017

ta có: ab(a2)-ab(b2) = (ab - ab) (a2-b2) = 0 (a2 - b2)

=> 0 (a2 - b2) = 0

=>a3b - ab3 =0 mà 0:6

=>a3b -ab3 :6

bước đầu là phân tích đa thức thành nhân tử