K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
4 tháng 9 2019

a,25^n.24

mà 25^n :5

25 tháng 7 2023

�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]

=�(�3−7�−6)(�3−7�+6)

=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)

⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

25 tháng 7 2023

6 tháng 3 2021

\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

18 tháng 6 2019

a) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

\(\Leftrightarrow-15x^2+46x-35+15x^2-4x-4=4\)

\(\Leftrightarrow42x-39=4\)

\(\Leftrightarrow42x=4+39\)

\(\Leftrightarrow42x=43\)

\(\Leftrightarrow x=\frac{43}{42}\)

\(\Rightarrow x=\frac{43}{42}\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)x=14\)

\(\Leftrightarrow x^3+8-x^4-3x=14\)

\(\Leftrightarrow x^3+8-x^4-3x=14-14\)

\(\Leftrightarrow-x^4+x^3-3x-6=0\)

=> x k có gt thỏa mãn

9 tháng 11 2017

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

9 tháng 11 2017

hơi bị khó hiểu

Câu 1:

Ta có: \(55^{n+1}+55^n\)

\(=55^n\left(55+1\right)=55^n\cdot56⋮56\)(đpcm)

Câu 2:

Ta có: \(5^6-10^4=\left(5^3-10^2\right)\left(5^3+10^2\right)\)

\(=\left(5^2\cdot5-5^2\cdot2^2\right)\cdot\left(5^2\cdot5+5^2\cdot2^2\right)\)

\(=5^2\cdot\left(5-2^2\right)\cdot5^2\cdot\left(5+2^2\right)\)

\(=5^4\cdot9=5^3\cdot45⋮45\)(đpcm)

12 tháng 11 2018

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)   (1)

\(A=n^3+\left(n^3+3n^2+3n+1\right)+\left(n^3+6n^2+12n+8\right)\)

\(A=3n^3+9n^2+15n+9\)

\(=3\left(n^3+3n^2+5n+3\right)\)

Đặt  \(B=n^3+3n^2+5n+3\)

\(=n^3+n^2+2n^2+2n+3n+3\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n^2+2n+3\right)\)

\(=\left(n^2+2n\right)\left(n+1\right)+3\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)

Ta thấy \(n\left(n+1\right)\left(n+2\right)⋮3\)   ( tích 3 số tự nhiên liên tiếp )

\(\Rightarrow3\left(n+1\right)⋮3\)

\(\Rightarrow B⋮3\)

\(\Rightarrow B=3k\left(k\in N\right)\)

Vậy  \(A=3B=3.3k=9k⋮9\left(dpcm\right)\)