Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)
\(=\left(5n^2+10n\right)\left(n+1\right)\)\(=5n\left(n+2\right)\left(n+1\right)\)
Đây là tích của ba số tự nhiên liên tiếp với 5
Ta thây trong ba số đó phải có 1 số chia hết cho 1, 1 số chia hết cho 2 và 1 số chia hết cho 3
suy ra tích của 3 số liên tiếp chia hết cho 1x2x3=6
Mà tích trên là tích của ba số tự nhiên liên tiếp với 5 nên tích trên phải chia hết cho : 6x5=30;
vậy tích trên chia hết cho 30;
Ủng hộ nha bạn
Đặt A = n4 -10n2 + 9 = (n4 -n2 ) - (9n2 - 9) = (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)
Vì n lẻ nên đặt n = 2k + 1 (k ∈ Z) thì
A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2) ⇒ A chia hết cho 16 (1)
Và (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)
Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384
Vậy ...
tick nha
đặt A=n^4 -10n^2+9
=n^4-n^2-9n^2+9
=(n^4-n^2)-(9n^2-9)
=n^2(n^2-1)-9(n^2-1)
=(n^2-1)(n^2-9)
=(n-1)(n+1)(n-3)(n+3)
vì A lẻ nên n=2k+1
(2k-2)2k(2k+2)(2k+4)
=16(k-1)k(k+1)(k+2) chia hết 16 (1)
ta có (k-1)k(k+1)(k+2) chia hết cho 24(tích 4 số tự nhiên liên tiếp) (2)
từ (1) và (2) suy ra A chia hết cho 384
vậy ... chia hết cho 384
a2 - a = a ( a - 1 )
mà a và a-1 là 2 số liên tiếp
=> 1 trong 2 số là số chẵn
=> a ( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2
Ta có : \(a^2-a=a\left(a-1\right)\)
Vì \(a\left(a-1\right)\)là tích 2 số nguyên liên tiếp nên
\(a\left(a-1\right)⋮2\)
+ \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(a\left(a-1\right)\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên :
\(a\left(a-1\right)\left(a+1\right)⋮3\)
+ \(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(+5\left(a-1\right)a\left(a+1\right)\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số nguyên liên tiếp
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)
\(\Rightarrow a^5-a⋮5\)