K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

C = 10n + 18n -28

+với n =1 => C =10+18 -28 =0 chia  hết cho 9

+ Giả sử C chia hết cho 9  với  n-1

  => C =10n-1 + 18(n-1) -28 chia hết cho 9

+ Ta chứng minh C  chia hết cho 9 đúng với n

C= [10n +18n -28 = 10.10n-1 +18(n -1).10  -280 ] +(162n +432)

  =10[10n-1 + 18(n-1) -28 ] +9(18n+48) chia hết cho 9

=> dpcm

15 tháng 2 2016

Ta có:  Vì  \(n\)  là số lẻ (theo giả thiết) nên  \(n\)  sẽ có dạng  \(2k+1\)

Các bước biến đổi:

\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)

                                       \(=\left(n^4-1\right)\left(n^8-1\right)\)

                                       \(=\left(n^4-1\right)^2\left(n^4+1\right)\)

\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)

Khi đó, ta xét  \(\left(n^2-1\right)^2\)  với  \(n=2k+1\)  thì  \(\left(n^2-1\right)^2\)  sẽ trở thành:  

\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)

chia hết cho  \(16\)

Lại có:  \(k\left(k+1\right)\)  chia hết cho  \(2\)  (vì là tích của hai số nguyên liên tiếp) nên  \(\left[k\left(k+1\right)\right]^2\)   chia hết cho  \(4\)

Do đó,  \(\left(n^2-1\right)^2\)  chia hết cho  \(16.4=64\)  \(\left(1'\right)\)

Mặt khác,  với  \(n=2k+1\)  \(\Rightarrow\)  \(\left(n^2+1\right)^2\)  và  \(n^4+1\)  lần lượt là các số chẵn

nên  \(\left(n^2+1\right)^2\)  chia hết cho  \(2^2=4\)   \(\left(2'\right)\)

   và   \(n^4+1\)  chia hết cho  \(2\)   \(\left(3'\right)\)

Từ  \(\left(1'\right);\)  \(\left(2'\right)\)  và  \(\left(3'\right)\)  suy ra  \(n^{12}-n^8-n^4+1\)  chia hết cho \(512\)

7 tháng 12 2015

Câu hỏi tương tự          

14 tháng 2 2016

\(2b.\)  

Với mọi  \(m;n\in Z\), ta có:

\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

\(\text{*)}\) Xét  \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)

                                         \(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)

                                         \(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)

             \(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)

Vì  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  là tích của  \(5\)  số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2;3\)  và  \(5\) 

Mà \(\left(2;3;5\right)=1\)  

Do đó,  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2.3.5=30\)  \(\left(1\right)\)

Mặt khác,  \(m\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(6\)  (tích của  \(3\)  số nguyên liên tiếp)

         nên  \(5mn\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(30\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\) , suy ra  \(mn\left(m^4-1\right)\)  chia hết cho  \(30\)  \(\left(\text{*}\right)\)

Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\)  chia hết cho cho  \(30\)  \(\left(\text{**}\right)\)

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra  \(mn\left(m^4-n^4\right)\)  chia hết cho  \(30\)  với mọi  \(m;n\in Z\)

 

14 tháng 2 2016

Đề câu  \(a.\)  sai rồi nha bạn! 

Ví dụ, với  \(n=2\)  thì  \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\)  không chia hết cho  \(7\)  (vô lí)

Hiển nhiên, với công thức tổng quát  \(3^{2n+1}+2^{2n+2}\)  sẽ không chia hết cho  \(7\)  với \(n=2\)

                                                   \(-------------\)

\(a.\)  \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)  

                                   \(=9^n.3+2^n.4\)

                                   \(=9^n.3-2^n.3+2^n.3+2^n.4\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)

     \(3^{2n+1}+2^{n+2}=3.7M+7.2^n\) 

Vì  \(3.7M\) chia hết cho  \(7\)  và  \(7.2^n\)  chia hết cho  \(7\)  nên  \(3.7M+7.2^n\)  chia hết cho  \(7\)

Vậy,  \(3^{2n+1}+2^{n+2}\)  chia hết cho  \(7\)