Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tim n voi so tu nhien,cmr
a,5n+2 + 26 . 5n + 82n+1 chia het cho 59
b,7 . 52n + 12 . 6n chia het cho 19
C = 10n + 18n -28
+với n =1 => C =10+18 -28 =0 chia hết cho 9
+ Giả sử C chia hết cho 9 với n-1
=> C =10n-1 + 18(n-1) -28 chia hết cho 9
+ Ta chứng minh C chia hết cho 9 đúng với n
C= [10n +18n -28 = 10.10n-1 +18(n -1).10 -280 ] +(162n +432)
=10[10n-1 + 18(n-1) -28 ] +9(18n+48) chia hết cho 9
=> dpcm
Ta có: Vì \(n\) là số lẻ (theo giả thiết) nên \(n\) sẽ có dạng \(2k+1\)
Các bước biến đổi:
\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)
\(=\left(n^4-1\right)\left(n^8-1\right)\)
\(=\left(n^4-1\right)^2\left(n^4+1\right)\)
\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)
Khi đó, ta xét \(\left(n^2-1\right)^2\) với \(n=2k+1\) thì \(\left(n^2-1\right)^2\) sẽ trở thành:
\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)
chia hết cho \(16\)
Lại có: \(k\left(k+1\right)\) chia hết cho \(2\) (vì là tích của hai số nguyên liên tiếp) nên \(\left[k\left(k+1\right)\right]^2\) chia hết cho \(4\)
Do đó, \(\left(n^2-1\right)^2\) chia hết cho \(16.4=64\) \(\left(1'\right)\)
Mặt khác, với \(n=2k+1\) \(\Rightarrow\) \(\left(n^2+1\right)^2\) và \(n^4+1\) lần lượt là các số chẵn
nên \(\left(n^2+1\right)^2\) chia hết cho \(2^2=4\) \(\left(2'\right)\)
và \(n^4+1\) chia hết cho \(2\) \(\left(3'\right)\)
Từ \(\left(1'\right);\) \(\left(2'\right)\) và \(\left(3'\right)\) suy ra \(n^{12}-n^8-n^4+1\) chia hết cho \(512\)
\(2b.\)
Với mọi \(m;n\in Z\), ta có:
\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)
\(\text{*)}\) Xét \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)
\(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)
\(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)
\(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)
Vì \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) là tích của \(5\) số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2;3\) và \(5\)
Mà \(\left(2;3;5\right)=1\)
Do đó, \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2.3.5=30\) \(\left(1\right)\)
Mặt khác, \(m\left(m-1\right)\left(m+1\right)\) chia hết cho \(6\) (tích của \(3\) số nguyên liên tiếp)
nên \(5mn\left(m-1\right)\left(m+1\right)\) chia hết cho \(30\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(mn\left(m^4-1\right)\) chia hết cho \(30\) \(\left(\text{*}\right)\)
Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\) chia hết cho cho \(30\) \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra \(mn\left(m^4-n^4\right)\) chia hết cho \(30\) với mọi \(m;n\in Z\)
Đề câu \(a.\) sai rồi nha bạn!
Ví dụ, với \(n=2\) thì \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\) không chia hết cho \(7\) (vô lí)
Hiển nhiên, với công thức tổng quát \(3^{2n+1}+2^{2n+2}\) sẽ không chia hết cho \(7\) với \(n=2\)
\(-------------\)
\(a.\) \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)
\(=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.3+2^n.4\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)
\(3^{2n+1}+2^{n+2}=3.7M+7.2^n\)
Vì \(3.7M\) chia hết cho \(7\) và \(7.2^n\) chia hết cho \(7\) nên \(3.7M+7.2^n\) chia hết cho \(7\)
Vậy, \(3^{2n+1}+2^{n+2}\) chia hết cho \(7\)