K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  

a: Xét tứ giác OAMB có

góc OAM+góc OBM=180 độ

nên OAMB là tứ giác nội tiêp

b: Xét (O) có

MA,MB là tiếp tuyến

nên MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc với AB

3 tháng 5 2020

khó thế

29 tháng 10 2015

Đặt 

P =1^2002 + 2^2002 + 3^2002 +4^2002 +...+ 2002^2002 

Q = 1^2+2^2+..+ 2002^2, ta có Q = 1/6*2002*2003*(2.2002+1) ≡ 0 (mod 11) 
{Công thức 1^2 +2^2 +...+ n^2 = n(n+1)(2n+1)/6} 

P - Q = (1^2002 -1^2) + (2^2002-2^2) +..+ (2^2002 -2002^2) 

Theo định lý Fermat nhỏ thì a^(p-1) ≡ 1 (mod p) 
=> a^10 ≡ 1 (mod 11) 
=> a^2000 ≡ 1 (mod 11) 
=> a^2002 ≡ a^2 (mod 11) (*) 

Từ (*) => P - Q ≡ 0 (mod 11) 
mà Q ≡ 0 (mod 11) theo cm trên 

=> P ≡ 0 (mod 11)

a: Xét tứ giác DAOB có 

\(\widehat{DAO}+\widehat{DBO}=180^0\)

Do đó: DAOB là tứ giác nội tiếp

b: Xét (O) có

DA là tiếp tuyến

DB là tiếp tuyến

Do đó: DA=DB

hay D nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OD⊥AB

Xét ΔOAD vuông tại A có AH là đường cao

nên \(OH\cdot OD=OA^2\)