Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4 - 3x3 + 5x2 - 9x + 6
= x4 - x3 - 2x3 + 2x2 + 3x2 - 3x - 6x + 6
= ( x - 1 ) ( x3 - 2x2 + 3x - 6 )
= ( x - 1 ) ( x - 2 ) ( x2 + 3 )
Vì ( x - 1 ) ( x - 2 ) là tích 2 số nguyên liên tiếp nên :
( x - 1 ) ( x - 2 ) ⋮ 2 ⇒ A ⋮ 2 (1)
- Nếu x chia 3 dư 1 thì x - 1 ⋮ 3 ⇒ A ⋮ 3
- Nếu x chia 3 dư 2 thì x - 2 ⋮ 3 ⇒ A ⋮ 3
- Nếu x chia 3 dư 0 thì x3 + 3 ⋮ 3 ⇒ A ⋮ 3
⇒ A ⋮ 3 với mọi x ϵ Z (2)
Mà ƯCLN( 1, 2 ) = 1 (3)
Từ (1) , (2) và (3) ta có :
A ⋮ 2.3 = 6 ⇒ đpcm
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
\(A=x\left(x^4-5x^2+4\right)\)
\(=x\left(x^4-x^2-4x^2+4\right)\)
\(=x\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-2\right)\left(x-1\right)\cdot x\cdot\left(x+1\right)\left(x+2\right)\)
Vì x-2;x-1;x;x+1;x+2 là 5 số liên tiếp
nên \(\left(x-2\right)\left(x-1\right)\cdot x\cdot\left(x+1\right)\left(x+2\right)⋮5!\)
hay \(A⋮120\)
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
\(\forall x\in N\) ta có
\(B=x^3+6x^2-19x-24=\left(x-3\right)\left(x+1\right)\left(x+8\right)\)
- Nếu x chẵn thì \(\left(x+8\right)⋮2\Rightarrow B⋮2\)
- Nếu x lẻ thì \(\left(x-3\right)⋮2\Rightarrow B⋮2\)
Vậy \(B⋮2\)
Lại có \(x-3\equiv x\left(mod3\right)\) và \(x+8\equiv x+2\left(mod3\right)\)
\(\Rightarrow B=\left(x-3\right)\left(x+1\right)\left(x+8\right)\equiv x\left(x+1\right)\left(x+2\right)\) (mod3)
Mặt khác x, x+1, x+2 là 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 3 \(\Rightarrow\left[x\left(x+1\right)\left(x+2\right)\right]⋮3\)
Hay \(B⋮3\)
Ta có \(B⋮2\), \(B⋮3\) mà 2 và 3 là 2 số nguyên tố cùng nhau nên \(B⋮6\)
Ta có: x^3 +5x
= (x^3 -x)+ 6x
= x(x^2 -1)+6x
= x(x-1)(x+1)+6x
Vì x;x-1 và x+1 là 3 STN liên tiếp nên x(x-1)(x+1) chia hết cho 6
Mà 6x chia hết cho 6
Do đó: x(x-1)(x+1)+ 6x chia hết cho 6
Vậy x^3 + 5x chia hết cho 6
Chúc bạn học tốt.