Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = 2x2 + x - 3
= 2x2 - 2x + 3x - 3
= ( 2x2 - 2x ) + ( 3x - 3 )
= 2x( x - 1 ) + 3( x - 1 )
= ( x - 1 )( 2x + 3 )
f(x) = 0 <=> ( x - 1 )( 2x + 3 ) = 0
<=> x - 1 = 0 hoặc 2x + 3 = 0
<=> x = 1 hoặc x = -3/2
Vậy x = 1 ; x = -3/2 là nghiệm của đa thức ( đpcm )
a: Ta có: \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5\)
=5
b: Ta có: \(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
=3
c: Ta có: \(4\left(6-x\right)+x^2\left(3x+2\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(=24-4x+3x^3+2x^2-5x^2+4x+3x^2-3x^3\)
=24
Tìm x,y
Ta có: \(\frac{x}{3}=\frac{y}{4}\)
\(\Rightarrow y=\frac{4x}{3}\) ( 1 )
Ta có: \(\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow z=\frac{5x}{3}\) ( 2 )
Theo đề bài: 2x + y = 2z ( 3 )
Thay ( 1 ), ( 2 ) vào ( 3 ) ta được một phương trình mới:
\(2x+\frac{4x}{3}=2.\left(\frac{5x}{3}\right)\)
\(\Leftrightarrow\frac{6x+4x}{3}=\frac{10x}{3}\)
\(\Leftrightarrow6x+4x=10x\)
\(\Leftrightarrow10x=10x\)
\(\Leftrightarrow x=x\) ( Vô số nghiệm )
\(\Rightarrow x\in R\) ( R là số thực, có nghĩa là tất cả các số trong vũ trụ này nha )
Ta có: \(x\in R\)
\(\Rightarrow y\in R\)
Vậy \(x,y\in R\)
ta có:
x^2+2x+1= x^2+x+x+1 = (x^2+x)+(x+1) = x*(x+1)+(x+1) = (x+1)*(x+1) = (x+1)^2