Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi biểu thức là $A$. Đặt $n=2k+1$ với $k$ nguyên.
$A=n^8(n^4-1)-(n^4-1)=(n^4-1)(n^8-1)$
$=(n^4-1)(n^4-1)(n^4+1)$
$=(n-1)^2(n+1)^2(n^2+1)^2(n^4+1)$
$=(2k)^2(2k+2)^2(4k^2+4k+2)^2(n^4+1)$
$=64[k(k+1)]^2(2k^2+2k+1)^2(n^4+1)$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên hiển nhiên chia hết cho 2
$\Rightarrow [k(k+1)]^2\vdots 4$
Với $n$ lẻ thì hiển nhiên $n^4+1\vdots 2$
$\Rightarrow A\vdots 64.4.2=512$ (đpcm)
`n^8+4n^7+6n^6+4n^5+n^4=n^4(n^4+4n^3+6n^2+4n+1)=n^4(n+1)^4=(n(n+1))^4=(2k)^4=16k^2\vdots16` với `k\inNN`
Đặt \(P=111...111222...222\), ta có:
\(P=111...111222...222\) (có \(100\) số \(1\) và \(100\) số \(2\) )
\(=111...111000...000+222...222\) (có \(100\) số \(1\), \(100\) số \(0\) và \(100\) số \(2\) )
\(=111...111.10^{100}+2.111...111\)
\(P=111...111\left(10^{100}+2\right)\)
Đặt \(111...111=k\), \(\Rightarrow\) \(9k=999...999\) (có \(100\) số \(9\) ) nên \(9k+1=1000...000=10^{100}\)
Do đó, \(P=k\left(9k+1+2\right)=k\left(9k+3\right)=3k\left(3k+1\right)\)
Mà \(3k\) và \(3k+1\) lại là \(2\) số tự nhiên liên tiếp nên suy ra điều phải chứng minh.
mình mới học lớp 7
...............
/////////////////////////////////
...............................
Ta co: 2n-1 chia het cho 7 nen 2n-1+2 se chia 7 du 2
=> 2n+1 khong chia het cho 7
Ta có: Vì \(n\) là số lẻ (theo giả thiết) nên \(n\) sẽ có dạng \(2k+1\)
Các bước biến đổi:
\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)
\(=\left(n^4-1\right)\left(n^8-1\right)\)
\(=\left(n^4-1\right)^2\left(n^4+1\right)\)
\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)
Khi đó, ta xét \(\left(n^2-1\right)^2\) với \(n=2k+1\) thì \(\left(n^2-1\right)^2\) sẽ trở thành:
\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)
chia hết cho \(16\)
Lại có: \(k\left(k+1\right)\) chia hết cho \(2\) (vì là tích của hai số nguyên liên tiếp) nên \(\left[k\left(k+1\right)\right]^2\) chia hết cho \(4\)
Do đó, \(\left(n^2-1\right)^2\) chia hết cho \(16.4=64\) \(\left(1'\right)\)
Mặt khác, với \(n=2k+1\) \(\Rightarrow\) \(\left(n^2+1\right)^2\) và \(n^4+1\) lần lượt là các số chẵn
nên \(\left(n^2+1\right)^2\) chia hết cho \(2^2=4\) \(\left(2'\right)\)
và \(n^4+1\) chia hết cho \(2\) \(\left(3'\right)\)
Từ \(\left(1'\right);\) \(\left(2'\right)\) và \(\left(3'\right)\) suy ra \(n^{12}-n^8-n^4+1\) chia hết cho \(512\)