Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right)\Rightarrow x^2=\left(y+z\right)^2\Rightarrow4yz-x^2=4yz-\left(y+z^2\right)=-\left(y-z\right)^2\)
Tương tự \(4zx-y^2=-\left(z-x\right)^2\)
\(4xy-z^2=-\left(x-y\right)^2\)
Ta lại có: \(yz+2x^2=yz+x^2-x\left(y+z\right)=yz+x^2-xy-xz=\left(x-y\right)\left(x-z\right)\)
Tương tự: \(zx+2y^2=\left(y-x\right)\left(y-z\right)\)
\(xy+2z^2=\left(y-z\right)\left(y-y\right)\)
\(P=\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y^2\right)}{\left(x-y\right)\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}=1\)
Lời giải:
a)
\(A=\frac{x^2y(y-x)-xy^2(x-y)}{3y^2-2x^2}=\frac{x^2y(y-x)+xy^2(y-x)}{3y^2-2x^2}=\frac{(xy^2+x^2y)(y-x)}{3y^2-2x^2}\)
\(=\frac{xy(x+y)(y-x)}{3y^2-2x^2}=\frac{xy(y^2-x^2)}{3y^2-2x^2}\)
Với $x=-3; y=\frac{1}{2}$ thì:
$xy=\frac{-3}{2}; x^2=9; y^2=\frac{1}{4}$
Do đó $A=\frac{-35}{46}$
b)
\(B=\frac{(8x^3-y^3)(4x^2-y^2)}{(2x+y)(4x^2-4xy+y^2)}=\frac{(2x-y)(4x^2+2xy+y^2)(2x-y)(2x+y)}{(2x+y)(2x-y)^2}\)
\(=4x^2+2xy+y^2=4.2^2+2.2.\frac{-1}{2}+(\frac{-1}{2})^2=\frac{57}{4}\)
1: a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37\) (Vì \(x-y=7\))
\(=100\)
Vậy \(A=100\)
b) Ta có: \(B=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10\)
\(=25\)
Vậy \(B=25\)
c) Ta có : \(C=\left(x-y\right)^2\)
\(=x^2-2xy+y^2\)
\(=\left(x^2+y^2\right)-2xy\)
\(=26-2.5\) (Vì \(x^2+y^2=26\) ; \(xy=5\))
\(=16\)
Vậy \(C=16\)
2: a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)
\(=x^2+2xy\)
\(=x\left(x+2y\right)\) \(\left(dpcm\right)\)
b) \(\left(x^2+y^2\right)^2-2xy^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\) \(\left(dpcm\right)\)
c) \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(=\left(x^2-2xy+y^2\right)+4xy\)
\(=\left(x-y\right)^2+4xy\) \(\left(dpcm\right)\)
Chúc bn học tốt ✔✔✔
1: \(MTC=2\left(x-y\right)\left(x+y\right)\)
\(\dfrac{x-y}{2x^2-4xy+2y^2}=\dfrac{x-y}{2\left(x-y\right)^2}=\dfrac{1}{2\left(x-y\right)}=\dfrac{1\cdot\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{2\left(x-y\right)\left(x+y\right)}\)
\(\dfrac{x+y}{2x^2+4xy+2y^2}\)
\(=\dfrac{x+y}{2\left(x^2+2xy+y^2\right)}\)
\(=\dfrac{x+y}{2\left(x+y\right)^2}=\dfrac{1}{2\left(x+y\right)}=\dfrac{x-y}{2\left(x+y\right)\left(x-y\right)}\)
\(\dfrac{1}{x^2-y^2}=\dfrac{2}{2\left(x^2-y^2\right)}=\dfrac{2}{2\left(x-y\right)\left(x+y\right)}\)
2: \(\dfrac{1}{x^2+8x+15}=\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{x+3}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
\(\dfrac{1}{x^2+6x+9}=\dfrac{1}{\left(x+3\right)^2}=\dfrac{x+5}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
3: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}=\dfrac{1\cdot\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(c-b\right)\left(c-a\right)}=\dfrac{1}{\left(b-c\right)\left(a-c\right)}=\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(b-a\right)\left(a-c\right)}=\dfrac{-1}{\left(a-b\right)\left(a-c\right)}=\dfrac{-\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)