K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Gọi d là ước chung lớn nhất của \(10n^2+9n+4\)\(20n^2+20n+9\)

\(\Rightarrow10n^2+9n+4⋮d\Rightarrow20n^2+18n+8⋮d\)

cũng có \(20n^2+20n+9⋮d\)

\(\Rightarrow20n^2+20n+9-\left(20n^2+18n+8\right)⋮d\)

\(\Rightarrow n+1⋮d\)

\(\Rightarrow n+1+10n^2+9n+4⋮d\)

\(\Rightarrow10n^2+10n+5⋮d\)

\(\Rightarrow20n^2+20n+10⋮d\)

\(\Rightarrow20n^2+20n+10-\left(20n^2+20n+9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do ƯCLN của tử và mẫu bằng 1 nên phân số này tối giản

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

21 tháng 10 2020

C=9n^3

27 tháng 12 2020

Nguyễn Việt Lâm; Nguyễn Lê Phước Thịnh giúp vs!

NV
27 tháng 12 2020

Gọi \(d=ƯC\left(n^2+4;n+5\right)\)

\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)

\(\Rightarrow5n-4⋮d\)

\(\Rightarrow5\left(n+5\right)-29⋮d\)

\(\Rightarrow29⋮d\)

\(\Rightarrow d=\left\{1;29\right\}\)

Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)

\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)

\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)

\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn

1 tháng 5 2015

ta có: n2+n+1= (n+2)(n-1) +3 
ta thấy hiệu hai số: (n+2) -(n-1) =3 chia hết cho 3 
suy ra: 
( *) hoặc (n+2) và (n-1) cùng chia hết cho 3, khi đó (n+2)(n-1) chia hết cho 9 nhưng 3 không chia hết cho 9 , dó đó (n+2)(n-1) +3 không chia hết cho 9 hay n2+n+1 không chia hết cho 9 
(**) hoặc (n+2) và (n-1) cùng không chia hết cho 3, khi đó (n+2)(n-1) ko chia hết cho 3,suy ra (n+2)(n-1) +3 ko chia hết cho 3. Mà đã không chia hết cho 3 thì đương nhiên không chia hết cho 9 rồi
------Cho 1 Đ.ú.n,g nhé

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)